
Methods in Microbiomics
Release 0.0.1

Sunagawa Group

Apr 19, 2024

DATA PREPROCESSING

1 Tutorials 3

2 Data Preprocessing 5

3 Genome Assembly 7

4 Taxonomic Profiling 9

5 Transcriptomics Analysis 11

6 Support 13

i

ii

Methods in Microbiomics, Release 0.0.1

Set of guidelines and best practices for robust and reproducible bioinformatics processing and data analysis with the
focus on Microbiomics research.

Important: This documentation is currently under construction.

DATA PREPROCESSING 1

Methods in Microbiomics, Release 0.0.1

2 DATA PREPROCESSING

CHAPTER

ONE

TUTORIALS

Tutorials are available for each section listed below. To start, create a directory for the tutorial of your interest:

mkdir <section>_tutorial
cd <section>_tutorial

For example, for Data Preprocessing, run:

mkdir preprocessing_tutorial
cd preprocessing_tutorial

Note: For the next section, you have to install conda first. Installation instructions can be found here.

For each of the sections we have provided a link to a conda environment file (i.e. a file that specifies which packages
to install) and a test dataset that can be used for practice. Download these files and save them to the tutorial directory.
Next, you can create and activate the conda environment and extract the test data:

conda env create -f <environment name>.yaml
conda activate <environment name>
tar -xvzf Sample1_isolate.tar.gz

For Data Preprocessing, you need to install mamba. Here are the commands to create the conda environment and
unpack the data:

mamba env create -f isolate_assembly.yaml
conda activate isolate_assembly
tar -xvpf Sample1_isolate.tar.gz

Now, you are ready to run the example commands given in the corresponding section.

3

https://docs.conda.io/en/latest/miniconda.html
https://mamba.readthedocs.io/en/latest/installation.html

Methods in Microbiomics, Release 0.0.1

4 Chapter 1. Tutorials

CHAPTER

TWO

DATA PREPROCESSING

Warning: Before proceeding to any of the bioinformatics workflows, make sure you have good quality data. See
Data Preprocessing for more.

Download data preprocessing conda environment file and data preprocessing test dataset

5

Methods in Microbiomics, Release 0.0.1

6 Chapter 2. Data Preprocessing

CHAPTER

THREE

GENOME ASSEMBLY

Best practices for Genome Assembly and Metagenomic Assembly.

Download isolate assembly conda environment file and isolate assembly test dataset

7

Methods in Microbiomics, Release 0.0.1

8 Chapter 3. Genome Assembly

CHAPTER

FOUR

TAXONOMIC PROFILING

Best practises for profiling of amplicon and metagenomic data

9

Methods in Microbiomics, Release 0.0.1

10 Chapter 4. Taxonomic Profiling

CHAPTER

FIVE

TRANSCRIPTOMICS ANALYSIS

Best practices for transcriptomic and metatranscriptomic data analysis

Best practices in metagenomic data analysis

11

Methods in Microbiomics, Release 0.0.1

12 Chapter 5. Transcriptomics Analysis

CHAPTER

SIX

SUPPORT

• If you have any questions or suggestions leave a comment below!

6.1 Data Preprocessing

Protocol provided by Hans-Joachim Ruscheweyh.

6.1.1 General Considerations

Data quality control is an essential first step in any bioinformatics workflow. Below we discuss recommended prepro-
cessing steps for short read Illumina sequencing data. Broadly, these steps involve Illumina adapter removal, con-
taminant filtering and quality-trimming. Additional preprocessing steps, recommended only for specific workflows,
are detailed in Other Considerations.

Important: This applies to (standard) Illumina short read data. Long read sequencing data from other technologies,
or other library preparations from Illumina (e.g. Nextera Mate Pair Reads data) will require a different preprocessing
protocol.

Note: Sample data for this section can be found here. The conda environment specifications are here. See the
Tutorials section for instructions on how to unpack the data and create the conda environment. After unpacking the
data, you should have a set of forward (Sample1_R1.fq.gz) and reverse (Sample1_R2.fq.gz) reads. Also included are
Illumina adapter sequences (adapters.fa) and PhiX genome (phix174_ill.ref.fa.gz).

1. Adapter Trimming. The adapter sequences contain the sequencing primer binding sites, index sequences, and
sequences that allow flow-cell binding. Unless removed, these can interfere with downstream analyses. For this
and other preprocessing steps, we use BBTools, a set of tools developed by the Joint Genome Institute. Adapter
trimming is performed using BBDuk. In this step, a FASTA file with Illumina adapter sequences is specified as
reference, and BBDuk will perform k-mer matching to trim the adapter sequences from the reads. The example
command is shown below.

Example command

bbduk.sh -Xmx1G usejni=t in=Sample1_R1.fq.gz in2=Sample1_R2.fq.gz \
out=Sample1_trimmed_R1.fq.gz out2=Sample1_trimmed_R2.fq.gz \
outm=Sample1_adapter_matched.fq.gz outs=Sample1_adapter_s.fq.gz \
refstats=Sample1.adapter_trim.stats statscolumns=5 overwrite=t ref=adapters.fa \
ktrim=r k=23 mink=11 hdist=1 2>> preprocessing.log

13

https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/

Methods in Microbiomics, Release 0.0.1

Options Explained

-Xmx This will be passed to Java to set memory usage. Xmx1G will set it to 1G.
usejni Enable JNI-accelerated version of BBDuk.
ktrim ktrim = r trims the adapter as well as all the bases to the right of the adapter sequence.
k Length of the k-mer used for matching.
mink Additionally matches shorter k-mers (with lengths between 23 and 11) to trim partial adapter sequences.
hdist Hamming distance for reference k-mers. The Hamming distance describes the number of bases by which

two DNA sequences differ.
outs Write singleton reads whose mate has failed filters to this file.

Note:

Why are adapter sequences trimmed from only the 3’ ends of reads?
Why do we choose k-mer length between 23 and 11?

2. Contaminant removal. Spike-ins (most commonly PhiX) are usually used for quality control of sequencing runs
as well as to ensure nucleotide diversity when sequencing low complexity libraries. We perform this filtering
step prior to downstream analysis to be completely sure that these sequences are not be present in your data. Here
we use BBDuk and PhiX genome is used as the reference.

Example command

bbduk.sh -Xmx1G usejni=t in=Sample1_trimmed_R1.fq.gz in2=Sample1_trimmed_R2.
→˓fq.gz \
out=Sample1_phix_removed_R1.fq.gz out2=Sample1_phix_removed_R2.fq.gz \
outm=Sample1_phix_matched.fq.gz outs=Sample1_phix_s.fq.gz \
ref=phix174_ill.ref.fa.gz k=31 hdist=1 \
refstats=Sample1_phix.stats statscolumns=5 2>> contaminant.log

Here, we use a different kmer size k=31 to remove Spike-ins. This is the recommended length by BBDuk to remove
all reads that have a 31-mer match to the PhiX genome.

Note: High nucleotide diversity (i.e. equal relative proportions of A,C,G, and T in each cycle) is critical to the
performance of Illumina sequencers. Low diversity (or low complexity) libraries, such as amplicon libraries, will
have a large proportion of one nucleotide and small proportions of other nucleotides in a cycle. To compensate for
low complexity, a PhiX DNA sequence is often added to the library. Different sequencers use different chemistry and
image processing software and require different amounts of PhiX spike-in (anywhere between 5% and 50%). Check
the latest information about your sequencing platform.

3. Quality filtering and trimming. In this step we use BBDuk to trim low quality bases from the ends of the reads
and filter reads based on length, average read quality, and number of Ns present.

Example command

bbduk.sh -Xmx1G usejni=t in=Sample1_phix_removed_R1.fq.gz in2=Sample1_phix_
→˓removed_R2.fq.gz \
out1=Sample1_clean_R1.fq.gz out2=Sample1_clean_R2.fq.gz \
outm=Sample1_qc_failed.fq.gz outs=Sample1_s.fq.gz minlength=45 \
qtrim=rl maq=20 maxns=1 stats=Sample1_qc.stats statscolumns=5 trimq=14 2>>␣
→˓qc.log

14 Chapter 6. Support

https://emea.support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-trimmed-from-only-the--ends-of-reads.html
https://ucdavis-bioinformatics-training.github.io/2020-Genome_Assembly_Workshop/kmers/kmers
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/

Methods in Microbiomics, Release 0.0.1

Options Explained

minlength=45 Filters out reads that are shorter than 45 bp.
qtrim=rl Trims low quality bases on the right and left ends of the reads.
trimq=14 Regions with average quality BELOW 14 will be trimmed.
maq=20 Filters out reads with average quality BELOW 20.
maxns=1 Filters out reads with more than 1 N.

Note: Base quality scores (i.e. level of confidence for any one base call) are an integral part of many bioinformatics
pipelines (i.e. alignment and variant calling). Quality scores are usually expressed on a Phred scale (𝑄 = −10𝑙𝑜𝑔10𝑃 ,
where P is the probability of an error in the base call). Base quality scores normally range somewhere between 2 and
40, where Q40 represents an error probability of 1/10000. More recently, Illumina started using binned quality scores.
For example, NovaSeq (with RTA3) only produces 4 Q-scores: 2 is assigned to no-calls, 12 to calls <Q15, 23 to ~Q20
and 37 to >Q30. According to Illumina and in our hands, these binned quality scores did not affect the downstream
analyses (i.e. variant calling).

All of the preprocessing commands can be piped together as follows:

bbduk.sh -Xmx1G usejni=t in=Sample1_R1.fq.gz in2=Sample1_R2.fq.gz \
out=stdout.fq outm=Sample1_adapter_matched.fq.gz outs=Sample1_adapter_s.fq.gz \
refstats=Sample1.adapter_trim.stats statscolumns=5 overwrite=t ref=adapters.fa \
ktrim=r k=23 mink=11 hdist=1 2>> preprocessing.log | \
bbduk.sh -Xmx1G usejni=t interleaved=true overwrite=t \
in=stdin.fq out=stdout.fq outm=Sample1_phix_matched.fq.gz outs=Sample1_phix_s.fq.gz \
ref=phix174_ill.ref.fa.gz k=31 hdist=1 refstats=Sample1_phix.stats statscolumns=5 2>>␣
→˓preprocessing.log | \
bbduk.sh -Xmx1G usejni=t overwrite=t interleaved=true \
in=stdin.fq out1=Sample1_clean_R1.fq.gz out2=Sample1_clean_R2.fq.gz \
outm=Sample1_qc_failed.fq.gz outs=Sample1_s.fq.gz minlength=45 \
qtrim=rl maq=20 maxns=1 stats=Sample1_qc.stats statscolumns=5 trimq=14 2>>␣
→˓preprocessing.log;

6.1.2 Other Considerations

Below are some of the other preprocessing steps that are recommended for specific applications only. All of these steps
will be performed on the clean reads produced by general preprocessing workflow outlined above.

Preprocessing Step Recommended for Tools
Filtering out host reads Any samples containing host DNA BBMap
Coverage normalization Metagenomic assembly (very large samples only) BBNorm
Paired-read merging Metagenomic assembly, 16S and mOTUs profiling BBMerge

6.1. Data Preprocessing 15

Methods in Microbiomics, Release 0.0.1

Filtering out host reads

Samples containing host DNA can be filtered by mapping the reads to the host genome. This step is performed using
BBMap aligner.

Note: As described in this post, simply mapping reads to host genome, might lead to false positives, i.e. reads that are
bacterial in origin, but nevertheless mapped to host genome. Removal of these reads might have a negative effect on
the quality of the assemblies. In case of human host, this can be avoided by using this masked genome. The masking
procedure is described in the post linked above. However, this is not available for other host genomes. Unmasked
references can be downloaded from NCBI, Ensembl, UCSC. Be sure to keep track of the genome version you are
using. Genomes for commonly analyzed organisms can also be downloaded from Illumina iGenomes.

Example Command

bbmap.sh -Xmx23g usejni=t threads=20 overwrite=t qin=33 minid=0.95 maxindel=3␣
→˓bwr=0.16 bw=12 quickmatch fast \
minhits=2 path=host_bbmap_ref qtrim=rl trimq=15 untrim in1=in.1.fq.gz in2=in.2.
→˓fq.gz outu1=out.1.fq.gz \
outu2=out.2.fq.gz outm=out.host.matched.fq.gz 2>> removeHost.log

This step has to be repeated for singleton sequences generated in the QC step:

bbmap.sh -Xmx23g usejni=t threads=24 overwrite=t qin=33 minid=0.95 maxindel=3 \
bwr=0.16 bw=12 quickmatch fast minhits=2 \
path=host_bbmap_ref qtrim=rl trimq=15 untrim in=in.s.fq.gz outu=out.s.fq.gz \
outm=out.s.host.matched.fq.gz 2>> out.rmHost.log

qin Set to 33 or 64 to specify input quality value ASCII offset. 33 is Sanger, 64 is old Solexa. Could be left
unspecified (default=auto).

minid Approximate minimum alignment identity to look for.
maxindel Don’t look for indels longer than this. Lower is faster.
bwr If above zero, restrict alignment band to this fraction of read length. Faster but less accurate.
bw Set the bandwidth directly.
qickmatchGenerate cigar strings more quickly.
fast Sets other paramters to run faster, at reduced sensitivity.
minhits Minimum number of seed hits required for candidate sites.
path Specify the location to write the index.
qtrim Quality-trim ends before mapping.
trimq Trim regions with average quality below this.
untrim Undo trimming after mapping.
in Primary reads input.
outu Write only unmapped reads to this file.
outm Write only mapped reads, that fail filters to this file.

Important: This command will NOT remove all of the host sequences from your sample. The main puropose of the
host removal as described here, is to improve metagenome assemblies, not to eliminate all of the host sequences, i.e.
if you’re working with humand data, some human reads might still be present in your samples.

16 Chapter 6. Support

https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://www.seqanswers.com/forum/bioinformatics/bioinformatics-aa/37175-introducing-removehuman-human-contaminant-removal
https://drive.google.com/file/d/0B3llHR93L14wd0pSSnFULUlhcUk/edit?resourcekey=0-PsIKmg2q4EvTGWGOUjsKGQ
https://support.illumina.com/sequencing/sequencing_software/igenome.html

Methods in Microbiomics, Release 0.0.1

Normalization

This step normalizes the coverage by down-sampling reads over high-coverage areas. This step is only
necessary for very large metagenomic samples in order to make the assembly computationally tractable.
An example using BBNorm is shown below. As above this step needs to be repeated for the singletons.

Example Command

bbnorm.sh -Xmx{memory_limit}G threads={threads} extra=s.fq.gz in1=r1.fq.gz \
in2=r2.fq.gz out1=output_1.fq.gz out2=output_2.fq.gz target=40 mindepth=0␣
→˓hist=output.hist \
peaks=output.peaks &> pe_norm.log; \

bbnorm.sh -Xmx{memory_limit}G threads={threads} extra=r1.fq.gz,r2.fq.gz \
in=s.fq.gz out=output_s.fq.gz target=40 mindepth=0 hist=output.hist2 \
peaks=output.peaks2 &> s_norm.log

-Xmx This will be passed to Java to set memory usage.
threads Set to number of threads desired.
extra For the kmer table: Additional files to use for input, but not for output.
in1 Path to the forward reads.
in2 Path to the reverse reads.
out1 Normalized forward reads.
out2 Normalized reverse reads.
target Target normalization depth.
mindepth Kmers with depth below this number will not be included when calculating the depth of a read.
hist Specify a file to write the input kmer depth histogram.
peaks Write the peaks to this file.

Pair-read Merging

Merging refers to merging two overlapping reads into one. This is recommended for amplicon data, mO-
TUs profiling and metagenomic assembly. We do not usually merge the reads for isolate genome assembly.
This can be done using BBMerge.

Example Command

bbmerge.sh -Xmx32G threads=32 in1=Sample1_R1.fq.gz in2=Sample1_R2.fq.gz out=Sample1.
→˓m.fq.gz \
outu1=Sample1.merge.R1.fq.gz outu2=Sample1.merge.R2.fq.gz minoverlap=16 usejni=t \
ihist=Sample1.merge.hist &> merge.log

-Xmx This will be passed to Java to set memory usage.
threads Set to number of threads desired.
in1 Path to the forward reads.
in2 Path to the reverse reads.
out File for merged reads.
outu1 File for forward unmerged reads.
outu2 File for reverse unmerged reads.
minoverlap Minimum number of overlapping bases to allow merging.
ihist Insert length histogram output file.
usejni Do overlapping in C code, which is faster. Requires compiling the C code.

6.1. Data Preprocessing 17

https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbnorm-guide/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbmerge-guide/

Methods in Microbiomics, Release 0.0.1

6.2 Genome Assembly

Protocol provided by Anna Sintsova.

Over the recent years, bacterial whole genome sequencing has become an indispensable tool for microbiologists. While
powerful, short read sequencing technologies only allow assembly of draft genomes (i.e. assembly consisting of multi-
ple scaffolds). As illustrated below, during whole genome shotgun sequencing, DNA is randomly sheared into inserts
of known size distribution and sequenced. If paired-end sequencing is used, two DNA sequences (reads) are gener-
ated - one from each end of a DNA fragment). The assemblers look for overlaps between sequencing reads to stitch
them together into contigs. The contigs can then sometimes be linked together into longer scaffolds (for example with
information from mate-pair reads).

Note: Long read sequencing (with PacBio or Nanopore) offers creation of complete circularized bacterial genomes.
However, the bioinformatics methods for this are still in development. They are likely to change as technology develops,
and the standard protocols are less well established (See this genome assembly guide for current suggestions).

18 Chapter 6. Support

https://www.illumina.com/science/technology/next-generation-sequencing/mate-pair-sequencing.html
https://github.com/rrwick/Trycycler/wiki/Guide-to-bacterial-genome-assembly

Methods in Microbiomics, Release 0.0.1

6.2.1 Isolate genome assembly using short reads

Note: Sample data for this section can be found here. The conda environment specifications are here. See the
Tutorials section for instructions on how to unpack the data and create the conda environment. After unpacking the
data, you should have a set of forward (Sample1_R1.fq.gz) and reverse (Sample1_R2.fq.gz) reads. These reads have
already been through the Data Preprocessing workflow and can be used directly for genome assembly. (Note: The
included files adapters.fa and phix174_ill.ref.fa.gz are not needed here.)

1. Data Preprocessing. Before proceeding to the assembly, it is important to preprocess the raw sequencing data.
Standard preprocessing protocols are described in Data Preprocessing. In addition to standard quality control
and adapter trimming, we also suggest normalization with bbnorm.sh and merging (see Data Preprocessing for
more details). Besides the common preprocessing steps, we usually run mOTUs on the cleaned sequencing
reads, to check for sample contamination or mis-labelling (both occur more frequently than you would expect).
For more details please check the Taxonomic Profiling of Metagenomes section.

2. Genome Assembly. Following data preprocessing, we assemble the cleaned reads using SPAdes. While SPAdes
generated scaffolds using paired end data (i.e. no mate-pair libraries), there will be few differences between
scaffolds.fasta and contigs.fasta. We use scaffolds for all subsequent analysis.

Example Command

mkdir sample1_assembly; \
spades.py -t 4 --isolate --pe1-1 Sample1_R1.fq.gz \
--pe1-2 Sample1_R2.fq.gz -o sample1_assembly

-t Number of threads
--isolate Use SPAdes isolate mode
--pe1-1 Forward reads
--pe1-2 Reverse reads
-o Specify output directory

3. Assembly Quality Control. Following assembly, we generate assembly statistics using assembly-stats, and
filter out scaffolds that are < 500 bp in length. The script we use for contig/scaffold filtering can be found
here: scaffold_filter.py. Alternatively, the metrics to evaluate genome quality can be also calculated using
QUAST. The output will contain information on the number of contigs, the largest contig, total length of the
assembly, GC%, N50, L50 and others. If reference genome assembly is available, QUAST will also assess
misassemblies and try to categorize them.

Note: N50 and L50: Given a set of contigs sorted by length in descending order, L50 is the smallest number of
contigs, whose length adds up to at least 50% of the genome length. N50 is the length of the smallest contig included
in L50 (i.e. if L50 is 2, N50 will be length of the 2nd contig).

6.2. Genome Assembly 19

https://github.com/motu-tool/mOTUs
https://github.com/ablab/spades
https://github.com/ablab/spades
http://quast.sourceforge.net/quast.html
http://quast.sourceforge.net/quast.html

Methods in Microbiomics, Release 0.0.1

Example Command for filtering and stats:

python scaffold_filter.py Sample1 scaffolds \
sample1_assembly/scaffolds.fasta sample1_assembly ISO;
assembly-stats -l 500 \
-t sample1_assembly/Sample1.scaffolds.min500.fasta > \
sample1_assembly/Sample1.assembly.stats

Sample1 Sample name
scaffolds Sequence type (can be contigs, scaffolds or transcripts)
sample1_assembly/scaffolds.
fasta

Input assembly to filter

sample1_assembly Prefix for the output file
ISO Type of assembly (ISO for metagenomics or META for isolate genomes

Example QUAST Command:

quast.py sample1_assembly/Sample1.scaffolds.min500.fasta \
-1 Sample1_R1.fq.gz -2 Sample1_R2.fq.gz -o sample1_assembly

Options Explained

-1 (or --pe1) File with forward paired-end reads in FASTQ format (files compressed with gzip are allowed).
-2 (or --pe2) File with reverse paired-end reads in FASTQ format (files compressed with gzip are allowed).
-o Specify output directory

4. Gene Calling and Annotation. Genome annotation is locating of genomic features (i.e. genes, rRNAs, tRNAs,
etc) in the newly assembled genomes, and for protein coding genes, describing the putative gene product. The
example below shows how this can be accomplished using prokka. More information about prokka can be found
here.

Example Command

prokka --outdir sample1_assembly --locustag sample1 \
--compliant --prefix sample1 sample1_assembly/Sample1.scaffolds.min500.fasta --force

Options Explained

20 Chapter 6. Support

https://github.com/tseemann/prokka
https://pubmed.ncbi.nlm.nih.gov/24642063/

Methods in Microbiomics, Release 0.0.1

--outdir Output folder
--locustag Locus tag prefix
--compliant Force Genbank/ENA/DDJB compliance: --addgenes --mincontiglen 200 --centre

XXX
--addgenes Add ‘gene’ features for each ‘CDS’ feature
--mincontiglen Minimum contig size [NCBI needs 200]
--centre Sequencing centre ID.
--prefix Filename output prefix
--force Force overwriting existing output folder

6.2.2 Alternative Approach

Alternatively, we had good results building short-read assemblies with Unicycler. However, these are not significantly
different from SPAdes assemblies described above (not surprising, since Unicycler runs SPAdes under the hood). In
addition, Unicycler is not being actively developed, and does not support the latest version of SPAdes. Please see Ryan
Wick’s Genome Assembly Guide for example command.

6.3 Metagenomic Assembly

Protocol provided by Hans-Joachim Ruscheweyh.

Technical advances in sequencing technologies in recent decades have allowed detailed investigation of complex micro-
bial communities without the need for cultivation. Sequencing of microbial DNA extracted directly from environmental
or host-associated samples have provided key information on microbial community composition. These studies have
also allowed gene-level characterization of microbiomes as the first step to understanding the communities’ functional
potential. Furthermore, algorithmic improvements, as well as increased availability of computational resources, make
it now possible to reconstruct whole genomes from metagenomic samples (metagenome-assembled genomes (MAGs)).
Methods for microbial community composition analysis are discussed in Taxonomic Profiling of Metagenomes. Here,
we describe building Metagenomic Assembly as well as building Gene Catalogs and MAGs from metagenomic data.

Note: Sample data and conda environment file for this section can be found here. See the Tutorials section for instruc-
tions on how to unpack the data and create the conda environment. After unpacking the data, run cd metag_test,
and you should see conda specifications metag.yaml and a reads directory containing a set of forward (.1.fq.gz) and
reverse (.2.fq.gz) reads for 3 metagenomic samples. These reads have already been through the Data Preprocessing
workflow and can be used directly for metagenomic assembly. There should also be scaffolds_filter.py.

6.3.1 Metagenomic Assembly

1. Data Preprocessing. Before proceeding to the assembly, it is important to preprocess the raw sequencing data.
Standard preprocessing protocols are described in Data Preprocessing. In addition to standard quality control
and adapter trimming, we also suggest normalization with bbnorm.sh and merging of paired-end reads (see
Data Preprocessing for more details).

2. Metagenomic Assembly. Following data preprocessing, we use clean reads to perform a metagenomic assembly
using metaSPAdes. metaSPAdes is part of the SPAdes assembly toolkit. Following the assembly, we generate
some assembly statistics using assembly-stats, and filter out contigs that are < 1 kbp in length. The script we
use for scaffold filtering can be found here: scaffold_filter.py. It is also included in the test dataset for this
section.

6.3. Metagenomic Assembly 21

https://github.com/rrwick/Unicycler
https://github.com/rrwick/Unicycler
https://github.com/rrwick/Trycycler/wiki/Guide-to-bacterial-genome-assembly#6-unicycler-short-read-assembly
https://github.com/ablab/spades

Methods in Microbiomics, Release 0.0.1

Assembly:

mkdir metag_assembly
for i in 1 2 3
do
mkdir metag_assembly/metag$i
metaspades.py -t 4 -m 10 --only-assembler \
--pe1-1 reads/metag$i.1.fq.gz \
--pe1-2 reads/metag$i.2.fq.gz \
-o metag_assembly/metag$i

done

-t Number of threads
-m Set memory limit in Gb; spades will terminate if that limit is reached
--only-assembler Run assembly module only (spades can also perform read error correction, this step will be

skipped)
--pe1-1 Forward reads
--pe1-2 Reverse reads
--pe1-s Unpaired reads
--pe1-m Merged reads
-o Specify output directory

Computational Resources needed for metagenomic assembly will vary significantly between datasets. In
general, metagenomic assembly requires a lot of memory (usually > 100 Gb). You can use multiple threads
(16-32) to speed up the assembly. Because test data set provided is very small, merging of the pair-end
reads was not necessary (see Data Preprocessing). It is helpful when working with real data - don’t forget
to include the merged and singleton files with --pe1-m and --pe1-s options.

Filtering:

Assumes scaffolds_filter.py is in metag_test

cd metag_assembly
for i in 1 2 3
do
python ../scaffold_filter.py metag$i scaffolds metag$i/scaffolds.fasta␣

→˓metag$i META
done

metag1 Sample name
scaffolds Sequence type (can be contigs, scaffolds or transcripts)
metag1/scaffolds.fasta Input assembly to filter
metag1 Prefix for the output file
META Type of assembly (META for metagenomics or ISO for isolate genomes)

Stats:

for i in 1 2 3
do
assembly-stats -l 500 -t <(cat metag$i/metag$i.scaffolds.min500.fasta) \
> metag$i/metag$i.assembly.stats

done

22 Chapter 6. Support

Methods in Microbiomics, Release 0.0.1

-l Minimum length cutoff for each sequence
-t Print tab-delimited output

3. The metagenomic scaffolds generated in step 2 can now be used to build and/or profile Gene Catalogs or to
construct MAGs.

6.3.2 Gene Catalogs

Gene catalog generation and profiling (i.e. gene abundance estimation) can provide important insights into the com-
munity’s structure, diversity and functional potential. This analysis could also identify relationships between genetic
composition and environmental factors, as well as disease associations.

Note: Integrated catalogs of reference genes have been generated for many ecosystems (e.g. ocean, human gut, and
many others) and might be a good starting point for the analysis.

Building

This protocol will allow you to create a de novo gene catalog from your metagenomic samples.

1. Gene calling. We use prodigal to extract protein-coding genes from metagenomic assemblies (using scaffolds
>= 500 bp as input). Prodigal has different gene prediction modes with single genome mode as default. To
run prodigal on metagenomic data, we add the -p meta option. This will produce a fasta file with amino acid
sequences (.faa), nucleotide sequences (.fna) for each gene, as well as an annotation file (.gff).

Gene Calling

Assumes you are in the metag_assembly directory.

for i in 1 2 3
do
prodigal -a metag$i/metag$i.faa -d metag$i/metag$i.fna -f gff \
-o metag$i/metag$i.gff -c -q -p meta \
-i metag$i/metag$i.scaffolds.min500.fasta

done

-a Specify protein translations file
-d Specify nucleotide sequences file
-f Specify output format: gbk: Genbank-like format (Default); gff: GFF format; sqn: Sequin feature table format;

sco: Simple coordinate output
-o Specify output file, default stdout
-c Closed ends, do not allow partial genes at edges of sequence
-q Run quietly (suppress logging output)
-p Specify mode: single or meta
-i Input FASTA or Genbank file

2. Gene de-replication. At this point gene-nucleotide sequences from all samples are concatenated together and
duplicated sequences are removed from the catalog. For this, genes are clustered at 95% identity and 90%
coverage of the shorter gene using CD-HIT. The longest gene sequence from each cluster is then used as a
reference sequence for this gene.

Clustering

6.3. Metagenomic Assembly 23

https://doi.org/10.1016/j.cell.2019.10.014
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/s41586-021-04233-4
https://github.com/weizhongli/cdhit/wiki

Methods in Microbiomics, Release 0.0.1

cd ..
mkdir gene_catalog
cat metag_assembly/metag*/metag*fna > gene_catalog/gene_catalog_all.fna
cat metag_assembly/metag*/metag*faa > gene_catalog/gene_catalog_all.faa
cd gene_catalog
mkdir cdhit9590
cd-hit-est -i gene_catalog_all.fna -o cdhit9590/gene_catalog_cdhit9590.fasta \
-c 0.95 -T 64 -M 0 -G 0 -aS 0.9 -g 1 -r 1 -d 0

-i Input filename in fasta format, required
-o Output filename, required
-c Sequence identity threshold, default 0.9
-T Number of threads, default 1; with 0, all CPUs will be used
-M Memory limit (in MB) for the program, default 800; 0 for unlimited
-G Use global sequence identity, default 1; if set to 0, then use local sequence identity, don’t use -G 0 unless you

use alignment coverage controls (e.g. options -aS)
-aS Alignment coverage for the shorter sequence, default 0.0; if set to 0.9, the alignment must cover 90% of the

sequence
-g 1 or 0, default 0; by cd-hit’s default algorithm, a sequence is clustered to the first cluster that meets the

threshold (fast cluster); if set to 1, the program will cluster it into the most similar cluster that meets the
threshold (accurate but slow mode); either 1 or 0 won’t change the representatives of final clusters

-r 1 or 0, default 1; by default do both +/+ & +/- alignments; if set to 0, only +/+ strand alignment
-d length of description in .clstr file, default 20; if set to 0, it takes the fasta defline and stops at first space

The fasta file generated by CD-HIT will contain a representative sequence for each gene cluster. To extract protein
sequences for each gene in the catalog, we first extract all the sequence identifiers from the CD-HIT output file and
use seqtk subseq command to extract these sequences from gene_catalog_all.faa. This file can be then used for
downstream analysis (ex. KEGG annotations).

grep "^>" cdhit9590/gene_catalog_cdhit9590.fasta | \
cut -f 2 -d ">" | \
cut -f 1 -d " " > cdhit9590/cdhit9590.headers
seqtk subseq gene_catalog_all.faa cdhit9590/cdhit9590.headers \
> cdhit9590/gene_catalog_cdhit9590.faa

Gene Catalog Profiling

Warning: Incomplete protocol

This protocol allows quantification of genes in a gene catalog for each metagenomic sample.

1. Read alignment. In the first step, (cleaned) sequencing reads are mapped back to the gene catalog using BWA
aligner. Note that forward, reverse, singleton and merged reads are mapped separately and are then filtered and
merged in a later step.

Alignment

Make sure you are back in metag_test directory. Note that test data do not include merged and singleton files. If you
have those, do not forget to align those separately as well.

24 Chapter 6. Support

https://github.com/weizhongli/cdhit/wiki
https://github.com/weizhongli/cdhit/wiki
https://github.com/lh3/seqtk
https://github.com/lh3/bwa

Methods in Microbiomics, Release 0.0.1

mkdir alignments
bwa index gene_catalog/cdhit9590/gene_catalog_cdhit9590.fasta

bwa mem -a -t 4 gene_catalog/cdhit9590/gene_catalog_cdhit9590.fasta reads/metag1.1.fq.gz␣
→˓\
| samtools view -F 4 -bh - > alignments/metag1.r1.bam

bwa mem -a -t 4 gene_catalog/cdhit9590/gene_catalog_cdhit9590.fasta reads/metag1.2.fq.gz␣
→˓\
| samtools view -F 4 -bh - > alignments/metag1.r2.bam

BWA:

-a Output all found alignments for single-end or unpaired paired-end reads, these alignments will be flagged as
secondary alignments

-t Number of threads

samtools:

-F
FLAG

Do not output alignments with any bits set in FLAG present in the FLAG field. When FLAG is 4, do
not output unmapped reads.

-b Output in the BAM format
-h Include the header in the output

2. Filtering the alignment files. To make sure that quantification of gene abundance relies only on high confidence
alignments, the alignment files are first filtered to only include alignments with length > 45 nt and percent identity
> 95%.

3. Counting gene abundance. This step counts the number of reads aligned to each gene for each of the samples.

Important: We’re currently working on a tool that can merge and filter alignment files, as well as quantify gene
abundances. Stay tuned! In the meanwhile, please contact us to learn more.

Note: Gene catalogs and collections of MAGs are often used to infer abundance of microorganisms in metagenomic
samples, however none are comprehensive and will miss some members (or the majority) of the microbial community.
It is important to estimate what percentage of the microbial community is represented in a gene catalog or a collection
of MAGs. This is evaluated using mapping rates: number of mapped reads (after alignment and filtering, as described
in Gene Catalog Profiling) divided by total number of quality-control reads.

Important: Per-cell normalization. Metagenomic profiles should be normalized to relative cell numbers in the sam-
ple. This can be achieved by dividing the gene abundances by the median abundance of 10 universal single-copy
phylogenetic marker genes (MGs).

6.3. Metagenomic Assembly 25

https://doi.org/10.1038/nmeth.2693
https://doi.org/10.1038/nmeth.2693

Methods in Microbiomics, Release 0.0.1

6.3.3 MAGs

The Holy Grail of metagenomics is to be able to assemble individual microbial genomes from complex community
samples. However, short-read assemblers fail to reconstruct complete genomes. For that reason, binning approaches
have been developed to facilitate creation of Metagenome Assembled Genomes (MAGs).

MAG reconstruction algorithms have to decipher which of the scaffolds generated during Metagenomic Assembly be-
long to the same organism (referred to as bin). While different binning approaches have been described, here we use
MetaBAT2 for MAG reconstruction. As shown in the figure below, MetaBAT2 uses scaffolds’ tetranucleotide frequen-
cies and abundances to group scaffolds into bins.

In this (very) simplified example, the blue scaffolds show similar tetranucleotide frequencies and similar abundances
(across multiple samples), and consequently end up binned together, and separately from the red scaffolds.

MAG Building

This workflow starts with size-filtered metaSPAdes assembled scaffolds (resulted from Metagenomic Assembly). Note
that for MAG building we are using >= 1000 bp scaffolds.

1. All-to-all alignment. In this step, quality controlled reads for each of the metagenomic samples are mapped to
each of the metagenomic assemblies using BWA. Here, we use -a to allow mapping to secondary sites. Note
that merged, singleton, forward and reverse reads are all aligned separately, and are later merged into a single
bam file.

Important: For MAG construction, the generated alignment files are filtered to only include alignments that are at
least 45 nucleotides long, with an identity of >= 95 and covering 80% of the read sequence. The alignment filtering

26 Chapter 6. Support

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662567/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662567/
https://github.com/lh3/bwa

Methods in Microbiomics, Release 0.0.1

was done with a tool we are building in the lab and is not included in the example command below. Please contact us
to learn more.

Create BWA index for each assembly:

Make sure you are in the metag_test directory and have run metagenomic assembly steps described above.

for i in 1 2 3
do
bwa index metag_assembly/metag$i/metag$i.scaffolds.min1000.fasta

done

Mapping every sample to every assembly:

mkdir -p alignments
for i in 1 2 3
do
for j in 1 2 3
do
bwa mem -a -t 16 metag_assembly/metag$i/metag$i.scaffolds.min1000.

→˓fasta reads/metag$j.1.fq.gz \
| samtools view -F 4 -bh - | samtools sort -O bam -@ 4 -m 4G >␣

→˓alignments/metag"$j"_to_metag"$i".1.bam
bwa mem -a -t 16 metag_assembly/metag$i/metag$i.scaffolds.min1000.

→˓fasta reads/metag$j.2.fq.gz \
| samtools view -F 4 -bh - |samtools sort -O bam -@ 4 -m 4G >␣

→˓alignments/metag"$j"_to_metag"$i".2.bam
samtools merge alignments/metag"$j"_to_metag"$i".bam \
alignments/metag"$j"_to_metag"$i".1.bam alignments/metag"$j"_to_metag"

→˓$i".2.bam
done

done

BWA:

-a Output all found alignments for single-end or unpaired paired-end reads, these alignments will be flagged as
secondary alignments

-t Number of threads

samtools:

-F
FLAG

Do not output alignments with any bits set in FLAG present in the FLAG field. When FLAG is 4, do
not output unmapped reads.

-b Output in the BAM format
-h Include the header in the output

Important: Computational Resources: Depending on the size of the dataset, this step would require significant
computational resources.

2. Within- and between-sample abundance correlation for each contig. MetaBAT2 provides
jgi_summarize_bam_contig_depth script that allows quantification of within- and between-sample abun-

6.3. Metagenomic Assembly 27

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662567/

Methods in Microbiomics, Release 0.0.1

dances for each scaffold. Here, we generate an abundance (depth) file for each metagenomic assembly by
providing the alignment files generated using this assembly. This depth file will be used by MetaBAT2 in the
next step for scaffold binning.

Depth calculation:

for i in 1 2 3
do
jgi_summarize_bam_contig_depths --outputDepth alignments/metag$i.depth \
alignments/metag*_to_metag"$i".bam

done

Note: Binning with MetaBAT2 can also be accomplished without between-sample abundance correlation, however
this step significantly improves the quality of reconstructed MAGs, and, in our opinion, is worth the computational
burden of all-to-all alignment.

3. Metagenomic Binning. Finally, we run MetaBAT2 to bin the metagenomic assemblies using depth files gener-
ated in the previous step.

mkdir mags
for i in 1 2 3
do
metabat2 -i metag_assembly/metag$i/metag$i.scaffolds.min1000.fasta -a␣

→˓alignments/metag$i.depth \
-o mags/metag$i --minContig 2000 \
--maxEdges 500 -x 1 --minClsSize 200000 --saveCls -v

done

4. Quality Control. After MAG reconstruction, it is important to estimate how well the binning perform. CheckM
places each bin on a reference phylogenetic tree and evaluates genome quality by looking at a set of clade-specific
marker genes. CheckM outputs completeness (estimation of fraction of genome present), contamination (percent-
age of foreign scaffolds), and strain heterogeneity (high strain heterogeneity would suggest that contamination is
due to presence of closely related strains in your sample).

Warning: Linux only!

checkm lineage_wf mags mags -x fa \
-f mags/checkm_summary.txt --tab_table

MAG building: low abundance metagenome/pooled assembly

Warning: Under construction

6.4 Amplicon Sequencing

Protocol provided by the Sunagawa group.

Contact: Anna Sintsova and Hans-Joachim Ruscheweyh

28 Chapter 6. Support

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662567/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662567/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662567/
https://ecogenomics.github.io/CheckM/
https://ecogenomics.github.io/CheckM/

Methods in Microbiomics, Release 0.0.1

Important: We use DADA2 pipeline for 16S Amplicon analysis. DADA2 tutorial provides a good introduction. If
using Illumina data with binned quality scores, please checkout this discussion.

16S amplicon sequencing remains one of the most widely used methods for the analysis of microbiome community
composition. Taxonomic composition, as well as alpha and beta diversity metrics, can provide novel biological insight
and show association with environmental conditions or clinical variables. 16s rRNA gene is about 1500 bp long and
encodes rRNA component of the small subunit of prokaryotic ribosome. The gene is composed of highly conserved
and 9 variable regions. This allows us to use the conserved regions as primer binding sites, and variable regions for
taxonomic classification.

Although 16S is a cost-effective and powerful technique, a number of factors can influence the outcomes of the analysis,
hindering comparisons between studies. The outcomes can be influenced by:

• sampling and sample storage strategy

• primer annealing efficiency

• which variable region is targeted

• library preparation and sequencing protocols

• bioinformatic processing pipelines (OTUs vs ASVs)

• database used for taxonomic annotation

6.4.1 16S and 18S Sequencing primers

Below you can find a table listing commonly used primers for 16S analysis.

As described in Walters et al, 515f-806r bacterial/archaeal primer pair, traditionally used by the Earth Microbiome
Project, has been shown to be biased against specific archeal and bacterial clades. Parada et al. and Apprill et al. have
modified the 515f/806r 16S rRNA gene primer pair to reduce these biases.

6.4. Amplicon Sequencing 29

https://doi.org/10.1038/nmeth.3869
https://benjjneb.github.io/dada2/tutorial.html
https://github.com/ErnakovichLab/dada2_ernakovichlab#learn-the-error-rates
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069754/
https://earthmicrobiome.org/protocols-and-standards/16s/
https://earthmicrobiome.org/protocols-and-standards/16s/

Methods in Microbiomics, Release 0.0.1

V-Region Primer Names Primer Se-
quences

Specificity Size Reference

V1-V3 27F/534R

AGAGTTTGATYMTGGCTCAG/

ATTACCGCGGCTGCTGG

Bacteria &
Archaea

507 Walker et al.

V3-V4 341F/785R

CCTACGGGNGGCWGCAG/

GACTACHVGGGTATCTAATCC

Bacteria &
Archaea

465 Klindworth et al.

V4 515F/806R

GTGCCAGCMGCCGCGGTAA/

GGACTACHVGGGTWTCTAAT

Bacteria &
Archaea

291 Caporaso et al.

V4 515F-
modified/806R

GTGYCAGCMGCCGCGGTAA/

GGACTACHVGGGTWTCTAAT

Bacteria &
Archaea

291 Parada et al.

V4 515F/806R-
modified

GTGCCAGCMGCCGCGGTAA/

GGACTACNVGGGTWTCTAAT

Bacteria &
Archaea

291 Apprill et al.

V4-V5 515F/926R

GTGCCAGCMGCCGCGGTAA/

CCGYCAATTYMTTTRAGTTT

Bacteria &
Archaea &
Eukaryotes

411 Parada et al.

6.4.2 16S Data Analysis

1. Removing adapters and splitting reads in forward/reverse orientation. It is essential to remove adapter
sequences for DADA2 pipeline to work properly. For this purpose we use cutadapt. We run cutadapt multiple
times to remove adapters that were added to the sequence multiple times. While this rarely happens, this step
saves some work in the downstream analysis. We also split forward and reverse inserts (e.g. 515-926 inserts
from 926-515 inserts), as the sequencing protocol produces both orientations.

Example command:

cutadapt -O 12 --discard-untrimmed -g {fwd_primer} -G {rev_primer} -o {output.
→˓r1tmp} -p {output.r2tmp} {input.r1} {input.r2} -j {threads} --pair-adapters -

(continues on next page)

30 Chapter 6. Support

https://doi.org/10.1186/s40168-015-0087-4
https://doi.org/10.1093/nar/gks808
https://doi.org/10.1073/pnas.1000080107
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.3354/ame01753
https://doi.org/10.1111/1462-2920.13023
https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

→˓-minimum-length 75
cutadapt -O 12 --times 5 -g {fwd_primer} -o {output.r1tmp2} -j {threads}

→˓{output.r1tmp}
cutadapt -O 12 --times 5 -g {rev_primer} -o {output.r2tmp2} -j {threads}

→˓{output.r2tmp}
cutadapt -o {output.r1} -p {output.r2} {output.r1tmp2} {output.r2tmp2} -j

→˓{threads} --minimum-length {minlength}

2. Filter and trim the reads. We next trim low quality bases, this is important for DADA2 merging to work. This
can be accomplished with DADA2 filterAndTrim function.

Important: How much do I truncate? It is recommended to look at the quality profile of your data, and, while ensuring
that you have enough sequence that your forward/reverse reads still overlap enough to merge (leave at least 10 nt overlap
for merging), truncate off as many of the nucleotides that come after quality crashes as you can. The quality of the
reverse reads usually deteriorates faster, thus reverse reads usually need more trimming than the forward reads.

Example command:

library(dada2);
packageVersion("dada2")

filterAndTrim(fwd={infqgz1}, filt={outfqgz1}, rev={infqgz2}, filt.rev=
→˓{outfqgz2}, matchIDs=TRUE, maxEE={maxee}, truncQ={truncq}, maxN=0, rm.
→˓phix=TRUE, compress=compress, verbose=TRUE, multithread={threads}, minLen=
→˓{minlen}, truncLen = c({trunclen_r1}, {trunclen_r2}))

3. Learning Error Rates. DADA2 algorithm needs to first estimate error rates from the data. This should be done
separately for samples sequenced on different lanes.

Warning: New Illumina sequencing data (e.g. NovaSeq) provides only binned quality scores (see Data Prepro-
cessing for more details). This created a problem for DADA2 error learning step. This is an ongoing issue, and is
discussed in detailed here and in this tutorial. Below is our current solution to the problem, the best solution might
be dataset specific.

Here we define a modified error function that maintains monotonicity even with binned quality reads:

loessErrfun_mod <- function (trans) {
qq <- as.numeric(colnames(trans))
est <- matrix(0, nrow = 0, ncol = length(qq))
for (nti in c("A", "C", "G", "T")) {
for (ntj in c("A", "C", "G", "T")) {
if (nti != ntj) {
errs <- trans[paste0(nti, "2", ntj),]
tot <- colSums(trans[paste0(nti, "2", c("A","C", "G", "T")),])
rlogp <- log10((errs + 1)/tot)
rlogp[is.infinite(rlogp)] <- NA
df <- data.frame(q = qq, errs = errs, tot = tot,

rlogp = rlogp)
mod.lo <- loess(rlogp ~ q, df, weights = log10(tot),span = 2)
pred <- predict(mod.lo, qq)

(continues on next page)

6.4. Amplicon Sequencing 31

https://github.com/benjjneb/dada2/issues/1307
https://github.com/ErnakovichLab/dada2_ernakovichlab#learn-the-error-rates

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

maxrli <- max(which(!is.na(pred)))
minrli <- min(which(!is.na(pred)))
pred[seq_along(pred) > maxrli] <- pred[[maxrli]]
pred[seq_along(pred) < minrli] <- pred[[minrli]]
est <- rbind(est, 10^pred)
} }
}

MAX_ERROR_RATE <- 0.25
MIN_ERROR_RATE <- 1e-07
est[est > MAX_ERROR_RATE] <- MAX_ERROR_RATE
est[est < MIN_ERROR_RATE] <- MIN_ERROR_RATE
err <- rbind(1 - colSums(est[1:3,]), est[1:3,], est[4,

], 1 - colSums(est[4:6,])
colSums(est[7:9,]), est[9,], est[10:12,], 1 - colSums(est[10:1
, est[5:6,], est[7:8,], 1 -
2,
rownames(err) <- paste0(rep(c("A", "C", "G", "T"), each = 4),

"2", c("A", "C", "G", "T"))
colnames(err) <- colnames(trans)
return(err)
}

The error rates can than be modeled as follows:

samplefile <- "samplefile_r1_fw"
outfile <- "samplefile_r1_fw.errors.rds"
outfile.plot <- paste(outfile, '.pdf', sep = '')
threads <- 8
nbases <- 1e8
]))
sample.files <- read.csv(samplefile, header=FALSE, sep='\t', stringsAsFactors␣
→˓= FA
LSE)[2]
s.f <- sample.files$V2
err <- learnErrors(s.f, nbases=nbases, multithread=threads, randomize=TRUE,␣
→˓verbos
e = 1, errorEstimationFunction = loessErrfun_mod)
saveRDS(err, file = outfile)
plot <- plotErrors(err,nominalQ=TRUE)
ggsave(outfile.plot, plot = plot)

4. Sample Inference. This is the core function of DADA2. Each read, its abundance and its quality is tested to
determine whether it is an actual, error-free ASV or a spurious sequence with errors. The error function from
the previous step is reused. DADA2 is using the error model to infer unique ASVs in each sample. This is also
done separately for samples from different lanes. You can read more about the core sample inference algorithm
in the DADA2 paper.

Example command:

library(dada2); packageVersion("dada2")

sample.files <- read.csv({samplefile}, header=FALSE, sep='\t',␣
→˓stringsAsFactors = FALSE)[2]

(continues on next page)

32 Chapter 6. Support

https://doi.org/10.1038/nmeth.3869

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

s.f <- sort(sample.files$V2)
sample.names <- sapply(strsplit(basename(s.f), "_R"), `[`, 1)
#if(!identical(sample.names.r1, sample.names.r2)) stop("Forward and reverse␣
→˓files do not match.")
names(s.f) <- sample.names
err <- readRDS({err.rds})
dd <- dada(s.f, err=err, pool='pseudo', multithread = threads,␣
→˓errorEstimationFunction = loessErrfun_mod)

seqtab <- makeSequenceTable(dd)
saveRDS(seqtab, file = {outfile.tab})
saveRDS(dd, file = {outfile.dd})

5. Read Merging. Now reads can be merged into inserts. The forward subsample is merged in standard orientation.
The reverse subsample is merged in inverse orientation. That way, all inserts will have the same orientation after
this step.

Example command:

library(dada2); packageVersion("dada2")
sample.files.r1 <- read.csv({samplefile.r1}, header=FALSE, sep='\t',␣
→˓stringsAsFactors = FALSE)[2]
sample.files.r2 <- read.csv({samplefile.r2}, header=FALSE, sep='\t',␣
→˓stringsAsFactors = FALSE)[2]
s.f.r1 <- sort(sample.files.r1$V2)
s.f.r2 <- sort(sample.files.r2$V2)
sample.names.r1 <- sapply(strsplit(basename(s.f.r1), "_R1"), `[`, 1)
sample.names.r2 <- sapply(strsplit(basename(s.f.r2), "_R2"), `[`, 1)
if(!identical(sample.names.r1, sample.names.r2)) stop("Forward and reverse␣
→˓files do not match.")
names(s.f.r1) <- sample.names.r1
names(s.f.r2) <- sample.names.r2
dd.r1 <- readRDS({infile.r1})
dd.r2 <- readRDS({infile.r2})
mergers <- mergePairs(dd.r1, s.f.r1, dd.r2, s.f.r2, verbose = TRUE)
seqtab.m <- makeSequenceTable(mergers)
saveRDS(mergers, file = {outfile.dd.m})
saveRDS(seqtab.m, file = {outfile.seqtab.m})

6. Chimera Removal. Chimeras/Bimeras are removed from each sample individually. Remember that each sample
consists of 2 subsamples, forward and reverse.

Warning: You should not be losing a lot of reads during the merging and chimera removal steps.

Example command:

library(dada2); packageVersion("dada2")
nobim.tab <- removeBimeraDenovo({wbim.tab}, method="pooled", multithread=
→˓{threads}, verbose=TRUE)
saveRDS(nobim.tab, file = {nobim.file})

6.4. Amplicon Sequencing 33

Methods in Microbiomics, Release 0.0.1

Note: Optional: remove spurious ASVs. In the next step we merge the individual tables into one big ASV table. Most
of the ASVs are spurious (appear in low counts and in only 1 sample). We remove all ASVs that appear < 5 times.

7. Taxonomic annotation. Taxonomic annotation is performed using IDTAXA with the training set corresponding
to the SILVA database v.138 and a confidence threshold of 40.

Example command:

#!/usr/bin/env Rscript
suppressMessages(library(optparse))

Define arguments
option_list = list(
make_option(c("-i", "--path_to_seqtab"), type="character", default=NULL,help=

→˓"Path to the sequence table file (RDS file containing a matrix with␣
→˓sequences as columns and samples as rows)", metavar="character"),
make_option(c("-s", "--path_to_training_set"), type="character",␣

→˓default=NULL,help="Path to the SILVA training set (will be downloaded if it
→˓'s not provided)", metavar="character"),
make_option(c("-c", "--threshold"), type="integer", default=40,help="IdTaxa␣

→˓threshold (default = 40)", metavar="integer"),
make_option(c("-t", "--threads"), type="integer", default=1,help="Number of␣

→˓threads (default = 1)", metavar="integer"),
make_option(c("-o", "--out_path"), type="character", default=NULL,help="Path␣

→˓to the output file (table with taxonomy as a tab-delimitted file)", metavar=
→˓"character")
);

description<-paste("The program loads an RDS file containing a sequence table␣
→˓and assigns the taxonomy of ASVs/OTUs using IDTAXA\n\n")

opt_parser = OptionParser(option_list=option_list,description = description);
opt = parse_args(opt_parser);

if (is.null(opt$path_to_seqtab) | is.null(opt$out_path)){
print_help(opt_parser)
stop("At least one argument must be supplied for -i and -o", call.=FALSE)

}

library(DECIPHER)
library(data.table)
library(tidyverse)

path_to_seqtab<-opt$path_to_seqtab
path_to_training_set<-opt$path_to_training_set
threads<-opt$threads
out_path<-opt$out_path
threshold<-opt$threshold

Check if the training set exists or download it and load it
(continues on next page)

34 Chapter 6. Support

https://doi.org/10.1186/s40168-018-0521-5
https://www.arb-silva.de/documentation/release-138/

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

if (is.null(path_to_training_set)){
cat("Training set not provided. It will be downloaded\n")
system(paste("wget --content-disposition -P ./ http://www2.decipher.codes/

→˓Classification/TrainingSets/SILVA_SSU_r138_2019.RData",sep=""))
path_to_training_set<-"SILVA_SSU_r138_2019.RData"

} else{
cat("Training set already exists. Using local copy\n")

}
load(path_to_training_set)

Read the RDS file
seqtab<-readRDS(path_to_seqtab)
seqs_fasta<-DNAStringSet(x=as.character(colnames(seqtab)))
names(seqs_fasta)<-as.character(colnames(seqtab))

Run IDTAXA and parse
annot <- IdTaxa(seqs_fasta, trainingSet=trainingSet, strand="top",␣
→˓processors=threads,threshold=threshold)

annot_df<-sapply(annot,function(x){as.data.frame(x) %>%␣
→˓mutate(annot=paste(rank,taxon,round(confidence,2),sep=";")) %>%␣
→˓summarise(tax=paste(annot,collapse="|"))}) %>%
unlist() %>%
as.data.frame() %>%
rename(tax=".") %>%
rownames_to_column(var="seq") %>%
mutate(seq=gsub(".tax$","",seq))

seqtab_annot<-t(seqtab) %>%
as.data.frame() %>%
rownames_to_column(var="seq") %>%
left_join(annot_df,by="seq") %>%
select(seq,tax,everything())

Save file
fwrite(seqtab_annot,file=out_path,sep="\t")

6.5 Taxonomic Profiling of Metagenomes

Protocol provided by Anna Sintsova.

Taxonomic profiling of complex microbial communities is an essential first step in the investigation of relationship
between community composition and environmental and/or health factors. The most common approach to community
profiling is amplification and classification the 16S rRNA gene. Methods related to 16S rRNA analysis are discussed in
detail in Amplicon Sequencing. Recently shotgun metagenomic sequencing has started to replace the amplicon based
approaches, as it provides higher resolution information about the microbial community, and resolves some of the biases
associated with 16S approach. A number of software tools have been developed to taxonomically profile metagenomic
samples. These tools have been benchmarked in recent studies. Here we’re going to talk about the use of mOTUs and
mTAGs for taxonomic profiling.

6.5. Taxonomic Profiling of Metagenomes 35

https://doi.org/10.1101/2021.07.12.451567

Methods in Microbiomics, Release 0.0.1

6.5.1 mOTUs

mOTUs determines the composition of metagenomic samples using 10 single copy phylogenetic marker genes and
an extensive database consisting of reference genomes, metagenomes and metagenome assembled genomes from 23
different environments. Different use cases and applications are discussed in detail in a recent publication and on
mOTUs website. Here we provide a quick reference guide to basic mOTUs functionality.

Note: Please download sample data and conda environment file for this section if you want to follow along.
See the Tutorials section for instructions on how to unpack the data and create the conda environment. mOTUs instal-
lation requires database download, so expect it to take a little bit of time.

1. Data Preprocessing. Before taxonomic profiling, it is important to preprocess the raw sequencing data. Standard
preprocessing protocols are described in Data Preprocessing.

Important: In addition to standard quality control and adapter trimming, we also suggest merging of paired-end reads
(see Data Preprocessing for more details). Using merged reads increases speed and accuracy.

2. Profile. Taxonomic profiles for each sample can be generated using mOTUs profile command. The output profile
will consist of identified mOTUs and their abundance.

mkdir motus_profiles
motus profile -f reads/ERR479298_sub1_R1.fq.gz \

-r reads/ERR479298_sub1_R2.fq.gz \
-n ERR479298_sub1 -o motus_profiles/ERR479298_sub1.motus -c -k mOTU -q -p

motus profile -f reads/ERR479298_sub2_R1.fq.gz \
-r reads/ERR479298_sub2_R2.fq.gz \
-n ERR479298_sub2 -o motus_profiles/ERR479298_sub2.motus -c -k mOTU -q -p

-f input file(s) for reads in forward orientation
-r input file(s) for reads in reverse orientation
-s input file(s) for unpaired reads (singletons or merged pair end reads)
-n sample name
-o output file name
-c print result as counts instead of relative abundances
-k taxonomic level (kingdom, phylum, class, order, family, genus, mOTU)
-q print the full rank taxonomy
-p print NCBI taxonomy identifiers

Important: Expect mOTU counts (when run with -c option) to be relatively small (compared to total number of reads
in your sample). The counts are proportional to the library size, and you can expect ~600 mOTU counts for 5,000,000
reads. If you still think you should be getting higher counts, please see FAQ for common issues.

Note: The unassigned at the end of the profile file represents the fraction of unmapped reads. This represents species
that we know to be present in the sample, but we are not able to quantify individually; hence we group them together
into an unassigned fraction. For almost all the analysis, it is better to remove this value, since it does not represent a
single species/clade. Please see FAQ for more information.

36 Chapter 6. Support

https://github.com/motu-tool/mOTUs
https://doi.org/10.1002/cpz1.218
https://motu-tool.org/
https://github.com/motu-tool/mOTUs
https://github.com/motu-tool/mOTUs/wiki/FAQ
https://github.com/motu-tool/mOTUs/wiki/FAQ

Methods in Microbiomics, Release 0.0.1

3. Merge. Individual taxonomic profiles can be merged together using mOTUs merge command to facilitate down-
stream analysis.

motus merge -i motus_profiles/ERR479298_sub1.motus,motus_profiles/ERR479298_sub1.motus -
→˓o motus_profiles/merged.motus

-i list of mOTU profiles to merge
-o output file name

6.5.2 mTAGs

mTAGs generates taxonomic profiles from short-read metagenomic sequencing data using small subunit of the ribo-
somal RNA (SSU-rRNA). The mTAGs tool uses a reference database built by clustering sequences within each genus
defined in SILVA 138 into OTUs at 97% identity. Each OTU is represented in the database as a degenerate consensus
sequence (generated using the IUPAC DNA code). mTAGs detects sequencing reads belonging to SSU-rRNA and an-
notates them through the alignment to consensus reference sequences. For more information about the methods please
see the mTAGs paper

1. Data Preprocessing. As always, it is important to preprocess the raw sequencing data. Standard preprocessing
protocols are described in Data Preprocessing. As with mOTUs, we also suggest merging of paired-end reads
(see Data Preprocessing for more details).

2. Download mTAGs_ database.

mtags download

2. Profile. Taxonomic profiles for each sample can be generated using mTAGs profile command. The tool produces
profiles at 8 different taxonomic levels (root, domain, phylum, class, order, family, genus, and otu). Root level
combines all domains, the otu level was generated by clustering of sequences within each genus. Each profile will
have an ‘Unaligned’ and ‘Unassigned’ entry, these represent sequences that could not be aligned or could not be
assigned at a given taxonomic level. These need to be taken into account when calculating relative abundances,
but should be removed for most of downstream analyses.

mkdir mtags_profiles
mtags profile -f reads/ERR479298_sub1_R1.fq.gz \

-r reads/ERR479298_sub1_R2.fq.gz \
-n ERR479298_sub1 -o mtags_profiles

mtags profile -f reads/ERR479298_sub2_R1.fq.gz \
-r reads/ERR479298_sub2_R2.fq.gz \
-n ERR479298_sub2 -o mtags_profiles

-f input file(s) for reads in forward orientation
-r input file(s) for reads in reverse orientation
-s input file(s) for unpaired reads (singletons or merged pair end reads)
-n sample name
-o output directory

3. Merge. Individual taxonomic profiles can be merged together using mTAGs merge on *.bins files produced by
mtags profile.

mtags merge -i mtags_profiles/*bins -o mtags_profiles/merged.mtags

6.5. Taxonomic Profiling of Metagenomes 37

https://github.com/motu-tool/mOTUs
https://github.com/SushiLab/mTAGs
https://github.com/SushiLab/mTAGs
https://doi.org/10.1093/bioinformatics/btab465
https://github.com/motu-tool/mOTUs
https://github.com/SushiLab/mTAGs
https://github.com/SushiLab/mTAGs

Methods in Microbiomics, Release 0.0.1

-i list of mOTU profiles to merge
-o output file name

Choosing between mOTUs and mTAGs

mOTUs and mTAGs both generate taxonomic profiles from shotgun metagenomic data, however they differ in their
approaches. The choice of the tool will depend on the specific dataset and question at hand.

Here are a few considerations to keep in mind:

1. mTAGs and mOTUs rely on different methodologies for classification. mTAGs uses rRNA sequences clustered
at 97% identity, while mOTUs relies on 10 universal single-copy marker genes.

2. If you would like to compare your data to rRNA-based studies (for example 16S rRNA amplicon), mTAGs would
be a better choice.

3. Since mOTUs does not rely on rRNA genes (unlike mTAGs), it avoids the potential problem of copy number
variation.

4. mTAGs relies on SILVA database, which in general has a better coverage of diversity. The % of not profiled reads
is usually much lower in mTAGs compared to mOTUs. However, this is highly dependent on the environment
being studied.

5. Very often the resolution of the mOTUs clusters is higher than that of rRNA OTUs. As a consequence, a single
16S sequence can correspond to multiple mOTUs.

6. The general patterns found in alpha and beta diversity correlate well between these two methods.

7. mOTUs profiles can provide additional information beyond the taxonomic annotation: ref-mOTUs are directly
linked to genomes (through specIs defined in ProGenomes2) and ext-mOTUs are obtained from MAGs. This
allows to explore the gene content of the profiled mOTUs, which is not possible for mTAGs profiles, which are
defined based on 16S rRNA sequences.

6.5.3 MAPseq

MAPseq is a fast and accurate taxonomic classification tool. Since it relies on rRNA sequences for profiling, it can be
applied to both amplicon and metagenomic data.

Important: Workflow coming soon!

6.6 zAMP: Amplicon-based Metagenomics Pipeline for reproducible
and scalable Microbiota Profiling

Protocol provided by Sedreh Nassirnia.

Microbiota profiling is a versatile and powerful tool with a wide range of applications in healthcare, research, environ-
mental studies, agriculture, and industry. 16S amplicon sequencing helps us to understand the composition and func-
tionality of microbial communities across various contexts, and can identify specific microbial patterns or biomarkers.
For more on 16S sequencing see Amplicon Sequencing.

38 Chapter 6. Support

https://github.com/motu-tool/mOTUs
https://github.com/SushiLab/mTAGs
https://github.com/SushiLab/mTAGs
https://github.com/motu-tool/mOTUs
https://github.com/SushiLab/mTAGs
https://github.com/motu-tool/mOTUs
https://github.com/SushiLab/mTAGs
https://github.com/motu-tool/mOTUs
https://github.com/SushiLab/mTAGs
https://progenomes.embl.de/
https://doi.org/10.1093/bioinformatics/btx517

Methods in Microbiomics, Release 0.0.1

6.6.1 Applications

• Disease diagnosis and prognosis: By profiling the microbiome, researchers can identify microbial signatures
that are associated with certain diseases. These biomarkers can be used to diagnose or predict the course of a
disease, enhancing the understanding and management of health conditions.

• Treatment response prediction: Certain microbial taxa within the microbiome can serve as indicators of how
a patient might respond to a particular treatment. This aspect of microbiota profiling is particularly valuable in
personalizing medical treatments and the development of new therapeutic strategies.

• Health and disease research: Beyond clinical applications, microbiota profiling is instrumental in broadening
the scientific understanding of the role of the microbiome in health and disease. This research can lead to new
insights into disease mechanisms and the development of novel preventive strategies.

• Environmental and ecological studies: Microbiota profiling is not limited to human health. It’s also used in
environmental and ecological research to understand the role of microbial communities in various ecosystems,
contributing to conservation efforts and the study of biodiversity.

• Agricultural and industrial applications: In agriculture, microbiota profiling can help to improve soil health,
plant growth, and disease resistance. It can aid in processes like waste treatment and bioenergy production in
industrial contexts.

To effectively carry out microbiota profiling for these diverse purposes, we need standard protocols and tools that are
compatible with many types of samples and able to provide accurate answers to the very diverse questions of the NCCR
community. Therefore, we developed zAMP, an in-house customized, standardized, and automated DADA2-based data
analysis pipeline, which includes a wide variety of command-line tools and R packages.

6.6.2 Implementation of zAMP

zAMP offers flexibility, allowing users to customize it depending on the research questions and sample type. To en-
sure reproducibility, zAMP integrates command-line tools and R packages as well as their dependencies through the
Singularity container and allowed users to run and share microbiota profiling workflow.

6.6.3 Input Files for zAMP

The workflow accepts absolute paths to fastq files as input, paired-end sequencing reads from local storage, and raw
reads from the Sequence Reads Archive (SRA), which will be downloaded with the SRA Toolkit.

6.6. zAMP: Amplicon-based Metagenomics Pipeline for reproducible and scalable Microbiota
Profiling

39

https://zamp.readthedocs.io/en/latest/
https://zamp.readthedocs.io/en/latest/

Methods in Microbiomics, Release 0.0.1

6.6.4 Some of the Features

• Read classification and taxonomy assignment: After the preprocessing steps, like merging paired reads, zAMP
classifies reads using the assignTaxonomy function across multiple taxonomic ranks, from Kingdom to Species.
This is facilitated by integrated classifiers like the original RDP, RDP as integrated into QIIME, and Decipher
IDTAXA, all requiring a reference taxonomic database.

• Reference taxonomic database preprocessing: The tool includes a secondary Snakemake workflow for prepar-
ing various reference taxonomic databases, such as Greengenes, SILVA, and EzBioCloud, enhancing the accuracy
of taxonomic classification.

• Dedicated scripts for taxonomic clarity: To avoid confusion between similar taxa, zAMP features a specific
script that identifies and fuses taxa with identical sequences, providing clearer taxonomic information to the user.

• In silico validation tool: Embedded within zAMP, this tool allows for accurate identification and classification
of specific taxa or pathogens in clinical samples. Using a user-provided list of accession numbers for specific
taxa, zAMP downloads genomes of interest from NCBI, performs in silico PCR using Simulate, and classifies
amplicons using EzBioCloud or other user-specified databases.

• Normalization of microbiome data: The pipeline offers various normalization methods, including rarefying,
TSS, CLR, CSS, TM, and transformations like log, Logit, and Arc-Sine Square Root, ensuring robust downstream
analysis.

• Diverse output formats: zAMP generates outputs in multiple formats, including tab-delimited ASV tables,
melted phyloseq table, and BIOM files. These are also combined into a single phyloseq object for easy manipu-
lation and visualization in R.

• Detailed visualization and statistics: Users benefit from a statistic table and barplot for raw, processed, and
taxonomically filtered reads. The interactive Krona plot allows for detailed investigation of sample compositions,
while rarefaction curves offer insights into species richness.

• User-friendly execution: Designed for convenience, zAMP can be executed with a single command line, making
it accessible for users to transform their microbiome data into meaningful insights.

For additional details about the tool and guidance on installation and tuning the parameters in the config file, please
refer to the zAMP documentation and the GitHub repository.

6.7 SNV Analysis on Metagenomic Data

Protocol provided by Aiswarya Prasad.

Single genomes and metagenome-assembled genomes (MAGs) provide a single snapshot in time and space of a commu-
nity of bacteria. They can also be thought of as an average representation of a group of very closely related microbes
(strains of a species) found in that sample or pool of samples. Profiling single-nucleotide variants (SNVs) provides
deeper insight into the sub-populations of the community. With sequencing becoming cheaper and faster, it is now
possible to sequence metagenomic samples deep enough to recover MAGs and use those to detect SNVs in those
samples.

SNV profiling is cheaper and more straightforward for simple microbial communities with few species or genera. A
crude way of assessing the minimum depth (e.g., 10x) needed a priori is to consider the number of species/genomes
you are interested in. Suppose you are interested in 10 genomes where the length of these genomes is 2 Mb with reads
of 150 bp, you would calculate the following:

2𝑀𝑏 * 10 𝑔𝑒𝑛𝑜𝑚𝑒𝑠 * 10 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 / 150 𝑟𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ ∼ 1.3𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑟𝑒𝑎𝑑𝑠 (∼ 200𝑀𝑏 𝑜𝑓 𝑑𝑎𝑡𝑎)

In this case, the above calculation underestimates the coverage, because it assumes that the ten genomes have similar
abundance, which is rarely true. As a result, more abundant genomes will have more than 10x coverage, while the low-
abundance genomes of interest will have little to none. Therefore, it is best to sequence deeper than this calculation

40 Chapter 6. Support

https://zamp.readthedocs.io/en/latest/
https://zamp.readthedocs.io/en/latest/
https://zamp.readthedocs.io/en/latest/
https://zamp.readthedocs.io/en/latest/
https://zamp.readthedocs.io/en/latest/
https://zamp.readthedocs.io/en/latest/
https://github.com/metagenlab/zAMP

Methods in Microbiomics, Release 0.0.1

suggests. In addition, if you have pooled samples, you must sequence deeper than you would sequence individual
samples, and you would also lose information about strain-level variation between individuals.

Note: What are bacterial species?

While the boundaries specifying units of diversity in microbial communities are not easily defined, bacterial genomes
can still be categorized into units based on their genome sequence. One popular method to do this is to define clusters
of genomes that share >95% average nucleotide identity (ANI). These clusters in most cases correspond to genomes of
the same species. This approach is becoming more prevalent, especially due to cheaper sequencing methods that allow
us to recover MAGs from complex samples, as well as tools that allow for pairwise comparisons of genomes.

In this protocol, we describe an approach to analyze population-level diversity using inStrain, which is documented in
detail here.

6.7.1 Aim

The goal of this analysis is to profile SNVs in a metagenomic sample in a database-independent manner, starting from
bam files obtained by mapping trimmed reads from each sample to a database of MAGs recovered from all the samples
de-replicated into 95% clusters (recommended). For guidelines on how to preprocess sequencing data and assemble
MAGs, please refer to Data Preprocessing and Metagenomic Assembly.

6.7.2 Overview

We must complete a few steps to prepare the data for inStrain. Including recovering the set of MAGs from the samples
of interest, dereplicating the MAGs, and gene calling or annotation of the MAGs (e.g., using Prokka). In addition, it is
helpful to create a metadata file containing information about the MAGs, such as which dereplicated group they belong
to, their quality score, etc. The tutorial Metagenomic Assembly covers building metagenomic assembly.

inStrain outlines the considerations to be made when preparing the input in their tutorial on establishing and evaluating
genome databases. This is a very useful place to gain an understanding of some important concepts and the reasons
behind choosing this approach. This tutorial includes examples of code that can be used to achieve this.

The tutorials on the inStrain documentation page are also very helpful. This tutorial presents an alternate scenario
parallel to Tutorial #2 on that page.

Create a Database of Metagenome-assembled Genomes (MAGs)

In this step, we create a database of MAGs containing one MAG to represent each species to infer SNVs. This can be
done by choosing the highest quality MAG from each cluster of MAGs that are on average, e.g. 95% similar to each
other. The MAGs can be clustered using the tool dRep. Once you have collected and renamed all medium and good
quality (>50% completeness and <5% contamination - as a rule of thumb) MAGs, make a tab-separated file containing
the columns named:

• Bin Id - genome name with the extension

• Completeness - from checkM

• Contamination - from checkM

You can do this using a script that parses the checkM output for the list of MAGs of at least medium quality.

dRep dereplicate /your/output/directory -g ./folder/file.fa -comp 0 -con 1000 --
→˓clusterAlg average \

--genomeInfo drep_genome_info.tsv -sa 0.95 -nc 0.2 -p 1 --debug

6.7. SNV Analysis on Metagenomic Data 41

https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1038/s41587-020-00797-0
https://instrain.readthedocs.io/en/latest/index.html
https://instrain.readthedocs.io/en/latest/important_concepts.html?highlight=drep#establishing-and-evaluating-genome-databases
https://instrain.readthedocs.io/en/latest/important_concepts.html?highlight=drep#establishing-and-evaluating-genome-databases
https://instrain.readthedocs.io/en/latest/tutorial.html#tutorials
https://drep.readthedocs.io/en/latest/index.html

Methods in Microbiomics, Release 0.0.1

The result that we are interested in will be found in /your/output/directory/data_tables/

• Sdb.csv lists each MAG and its score.

• Cdb.csv contains the information about which cluster each MAG ends up in.

Using this information, collect the best scoring MAG for each dRep cluster (on the second column of Cdb.csv named
secondary_cluster) and concatenate them into the file MAG_rep_database.fa. Ensure that the scaffolds have
unique names across MAGs. In the rep database fasta, you will simply put all the scaffolds with each having its
own header and not necessarily the information about which MAG it is from. This information will be separately
summarized in another file for later steps.

Annotate the representative Database (optional)

If you would like to have gene-level information in inStrain you can include a file specifying the positions of genes in
the MAGs obtained using prodigal (this is optional for inStrain).

prodigal -i MAG_rep_database.fa -d MAG_rep_database.fna -a MAG_rep_database.faa -p meta &
→˓> my_log_file.log

Make Scaffolds to bin File

with open(output.scaffold_to_bin_file, "w") as f:
for mag in input.rep_mags:

with open(mag, "r") as m:
for line in m:

mag_name = os.path.basename(mag).split(".")[0]
if line.startswith(">"):

scaffold = line.strip().split(">")[1]
f.write(f"{scaffold}\t{mag_name}\n")

Map reads to MAG Database

Ensure that you use bowtie2 for this, as recommended by inStrain. Avoid BWA (even though it might be your favorite
aligner) as inStrain may have issues handling the way that it calculates insert size, and the BWA documentation is
unclear about how this is performed.

bowtie2-build mag_rep_database.fa mag_rep_database.fa &> bowtie2_build.log # bowtie index
map to rep MAGs
bowtie2 -X 1000 -x mag_rep_database.fa -1 sample_R1_repaired.fastq.gz -2 sample_R2_
→˓repaired.fastq.gz | samtools view -bh - | samtools sort - > sample_bowtie.bam
samtools flagstat sample_bowtie.bam > sample_bowtie_flagstat.tsv

42 Chapter 6. Support

Methods in Microbiomics, Release 0.0.1

Make the inStrain Profile

Output and parameter information is well-documented in inStrain - run using db_mode if you wish to run inStrain
compare later. This makes it much faster.

inStrain profile sample_bowtie.bam mag_rep_database.bam -o /your/output/directory/ -p 8 -
→˓g mag_rep_database_genes.fna \

--max_insert_relative 5 -s scaffold_to_bin_file.tsv
inStrain plot -i inStrain_profile_object -pl a -p 16
inStrain profile sample_bowtie.bam mag_rep_database.fa -o /path/to/output/folder/sample -
→˓p 8 \

-g mag_rep_database_genes.fna --max_insert_relative 5 --database_mode -s scaffold_to_
→˓bin_file.tsv

Run inStrain compare

This can be run on all profiles together, especially if you did not have a lot of samples, but for datasets including a large
number of samples, it will be more efficient to run this in parallel for each species at a time by using the --genome
option to specify one genome at a time.

inStrain compare -i inStrain_profile -s scaffold_to_bin_file.tsv -p 8 -o /your/output/
→˓directory/ \

--database_mode --genome mag.stb

6.8 zDB: Comparative Genomics Analysis

Protocol provided by Alessia Carrara.

Comparative genomic analyses allow researchers to study and compare the genetic information of different organisms,
providing valuable insights into their evolution, biology, and function. However, it is a tedious and time-consuming
process that requires specialized knowledge since it relies on the integration of results obtained from multiple tools,
further combined for visualization purposes. Therefore, to facilitate genome analysis and comparison, we developed
zDB, an application that integrates an analysis pipeline and a visualization platform.

6.8. zDB: Comparative Genomics Analysis 43

https://github.com/metagenlab/zDB#overview

Methods in Microbiomics, Release 0.0.1

6.8.1 Target Audience

zDB has been developed for both newbies in genomics, who don’t have the experience with bioinformatics tools, and
trained bioinformaticians, who would like to invest in a reproducible tool. Therefore, don’t be scared and don’t hesitate
to use it!

6.8.2 zDB: Supported Analyses

The analysis pipeline built in zDB can support different types of analysis according to the user’s needs. Indeed, a core
set of analyses is run by default, while optional analyses can be separately added.

• Orthology inference: identification of orthogroups by OrthoFinder (an orthogroup is the group of genes de-
scended from a single gene in the last common ancestor (LCA) of a group of species).

• Phylogenetic reconstructions: phylogeny built based on concatenated alignments of single copy orthologs with
FastTree.

• Blast search: generate blast databases out of your input genome

• COG annotation: label orthologs with the 25 functional categories provided by the COG database (Clusters of
Orthologous Groups of proteins) and previously identified based on shared evolutionary origins and functional
roles of genes.

• KEGG orthologs annotation and pathway completion analysis: label orthologs with molecular interaction
pathways and networks provided by the KEGG database (Kyoto Encyclopedia of Genes and Genomes). Obtain
insights about the completeness of the identified pathways.

• PFAM domains annotation: assign protein domains to orthologs

• Swissprot homologs search: look for homologous proteins for each ortholog in the Swiss-Prot database which
contains manually curated protein sequences and provides a high level of annotation.

• RefSeq homologs search: look for homologous proteins for each ortholog in a comprehensive collection of
curated and annotated sequences of a wide range of organisms.

44 Chapter 6. Support

https://github.com/metagenlab/zDB#overview
https://github.com/metagenlab/zDB#overview

Methods in Microbiomics, Release 0.0.1

For more info about the tools and parameters please refer to the methods section of the zDB documentation or the
materials and methods section of the manuscript.

6.8.3 Input Files for zDB

• Input csv file containing the path to .gbk files.

• The requirement of annotated genomes (.gbk files) implies that the user is responsible for the annotation of the
genomes. Here are some examples of annotation tools you can use: bakta, prokka, PGAP.

• The input genomes (minimum 2) can be publicly available and/or newly sequenced ones.

6.8.4 How to install and run zDB

In the GitHub repository, you can have detailed instructions on how to install and run zDB. Please refer to if you have
any problem or you want to get more details. In the meantime, here below is a brief list of all the key steps:

1. Install zDB and tools to run the analysis and/or web app in containers (recommended).

conda install nextflow=22.10 -c bioconda # install nextflow
conda install zdb -c bioconda # zDB installation
conda install singularity=3.8.4 -c conda-forge # singularity installation

For the installation of docker, please see the Docker documentation.

2. Download the database(s) needed for the annotation steps (optional).

Select the databases needed for your analysis. The RefSeq database must be downloaded and prepared autonomously.

zdb setup --pfam --swissprot --cog --ko --conda

3. Run the pipeline.

• Add flags according to the annotation you want to get.

• RefSeq homologs search significantly slows down the analysis.

• All the results will be stored in an SQL database.

zdb run --input=input.csv --ko –cog

4. Initiate and access the web server.

The terminal will output an IP address where a customized web-based interface built from the SQL database is available.
To access the interface, follow this example: If the output looks like this: @155.105.138.249 172.17.0.1 on port
8080, type either 155.105.138.249:8080 or 172.17.0.1:8080 on your web browser to visualize.

6.8. zDB: Comparative Genomics Analysis 45

https://zdb.readthedocs.io/en/latest/methods/annotation.html#methods
https://www.biorxiv.org/content/10.1101/2023.05.31.543076v1
https://github.com/metagenlab/zDB#overview
https://docs.docker.com/get-docker/

Methods in Microbiomics, Release 0.0.1

6.8.5 Accessibility of the Output

If you want to share your newly generated SQL database you can export it using zdb export command and transfer it to
other machines. You may want to transfer it to i) a personal machine for personal usage, ii) a lab machine to host it on
an intranet domain and make it accessible to other lab mates, or iii) host it on an internet domain to make it accessible
to everyone.

6.8.6 Useful Links to explore zDB by yourself!

• This example of the web interface generated via zDB on a dataset of 41 Rickettsiales genomes.

• Tips on how to navigate the web interface and interpret your data.

6.9 Metatranscriptomics without Metagenomics (defined Commu-
nity)

Protocol provided by Anna Sintsova.

Important: This documentation is currently under construction.

Metatranscriptomic data arising from defined communities (i.e. community, whose composition is known) can be
analysed in a way that’s similar to traditional RNASeq with a few key differences. In this case, we first map the quality-
controlled reads to the bacterial genomes, and then count number of reads mapping to each feature. The statistical
analysis to identify differentially expressed features can be performed using DESeq2.

Once the metagenome is ready, you are read to proceed with transcript quantification workflow

6.9.1 Transcript quantification

Preprocessing the genomes

1. First we create a metagenome, i.e. a concatenation of genome sequences for all of the organisms present in the
community. We also need to create a combined annotation file (gff). This will be needed later on to count how
many reads mapped to each gene.

Note: Why is competitive mapping important? It properly accounts for sequences that potentially map to multiple
targets/species (multi-mappers, count as fractions). If the sample was mapped to each species individually, these reads
will be counted towards each genome, overestimating the counts.

cat species1.fasta species2.fasta > metagenome.fasta

2. Here, we build the genome index using bowtie2. This is an essential step before any read alignment step regardless
of aligner you choose.

bowtie2-build metagenome.fasta metagenome

46 Chapter 6. Support

https://zdb.metagenlab.ch/)
https://zdb.readthedocs.io/en/latest/tutorial/website.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Methods in Microbiomics, Release 0.0.1

Transcript profiling

3. (Optional) Depending on the library preparation strategy, metatranscriptomic samples can contain large amounts
of rRNA. You can use fastqc_screen to assess the amount of rRNA in your samples, and sortmerna[] to filter it
out.

3. Next, we align reads from each sample to our indexed metagenome.

bowtie2 ...

Note: Different alignment and counting tools can be used for this step. We have tested BWA + sushiCounter, salmon
as well as bowtie2 + featureCounts. In our hands, all of these pipelines produce very similar results. It is always best
to test and see what works for your data!

4. Next, we count number of inserts aligned to each feature of interest (i.e. gene). For this we use featureCounts
and we use –fraction to assign multi-mapped reads . . .

featureCounts ...

Warning: Be careful when combining different aligners and counting methods - not all of them are perfectly
compatible. For example, featureCounts cannot recognize multi-mapped reads in alignment files generated by
BWA, and smth about STAR and featureCounts as well.

5. Statistical analysis. To effectively analyse metatranscriptomic data, you need to account for variation in taxo-
nomic composition across samples. Above, we used matching metagenomic data for this purpose. While we
cannot do this here, we can still perform taxon-specific scaling, since we know the taxonomic composition of the
community. This is dissected in detail in this paper [], which also provides template code for the analysis. This
analysis ends up being equivalent to analysing the dataset as if it were a composition of N traditional RNAseq
datasets, where N is the number of species in the community.

6.10 Metatranscriptomics with Metagenomics

Protocol adapted from Guillem Salazar.

Metatranscriptomics is the analysis of all of the transcriptomes present in a sample and is an effective method to assess
the activity of a microbial community. Unlike metagenomic data, metatranscriptomics can help decipher the metabolic
functions actively expressed by the community at any given time.

• Advantages:

– Best way to get information about community activity.

• Disadvantages:

– Sample preparation might be difficult and expensive.

– Data analysis methods are not well established.

Metatranscriptomic experiments can be broadly summarised into 2 different types: experiments that include matching
metagenomic samples and those that do not. The analysis of these two datatypes are different. You can find a tutorial
of how to analyze metatranscriptomic data without metagenomics on our Metatranscriptomics without Metagenomics
(defined Community) website.

6.10. Metatranscriptomics with Metagenomics 47

Methods in Microbiomics, Release 0.0.1

6.10.1 Dataset

Here, we will combine metatranscriptomics with metagenomics by using metagenomic data to normalize the transcript
abundance. In order to do this, metagenomic data was processed as described in gene catalog creation to create a
gene catalog. Gene functional annotation into orthologous groups was then performed using the KEGG database. The
metagenomic data was then mapped back to the gene catalog to determine gene abundance. And the metatranscrip-
tomic data from each sample was then mapped to the gene catalog to determine transcript abundance. To determine
gene expression, we will look at the ratios of transcript abundance to gene abundance (after some normalisations of
course).

Note: Transcript abundance depends on both gene abundance (number of genes) and expression level (number of
mRNAs per gene). See Figure S1 for more information.

Note: The -1 fraction are unannotated genes, which we must account for, for proper normalisation. You can read more
on this in the Gene length normalisation section.

The dataset used in this tutorial is from the article Gene Expression Changes and Community Turnover Differentially
Shape the Global Ocean Metatranscriptome, Salazar et al. The data can be downloaded here. These files are just a
subset of the full dataset and are only meant to be used for this tutorial. To learn how to download and unpack the data
follow these instructions.

This will contain the following files:

• MGS_K03040_K03043_tara.tsv.gz contains a sample of raw counts for metagenomic and metatranscriptomic
samples.

• MGS_K03040_K03043_tara_lengthnorm.tsv.gz contains length normalised counts for metagenomic and meta-
transcriptomic samples.

• K03704_tara_lengthnorm_percell.tsv.gz contains length and per-cell normalised counts for K03704 for metage-
nomic and metatranscriptomic samples.

• sample_info.csv contains some metadata about the samples.

6.10.2 Data Normalisation

For both gene abundance and transcript abundance data, we must remove the following sources of bias:

• Differences in gene length between genes.

• Differences in sequencing depth between samples.

• Differences in genome size distribution between samples.

• Compositionality: The number of inserts for a given gene in a given sample can only be interpreted relative to
the rest of the genes in the sample.

Note: Genome size differences can lead to biases and challenges in accurately comparing gene expression levels
between different samples. To account for the genome size differences we will normalize the gene and transcript
abundance data by abundances of 10 marker genes. This is explained in further detail in the section Sequencing depth,
per cell normalisation and compositionality.

48 Chapter 6. Support

https://www.sciencedirect.com/science/article/pii/S009286741931164X#figs1
https://doi.org/10.1016/j.cell.2019.10.014
https://doi.org/10.1016/j.cell.2019.10.014

Methods in Microbiomics, Release 0.0.1

Setting up R environment and loading the data

We perform all of the normalisation steps in R. To run this analysis you will need tidyverse and data.table libraries.

library(data.table)
library(tidyverse)
To read compressed files data.table needs R.utils library
library(R.utils)
library(patchwork)
library(GGally)

Next we are going to load gene and transcript abundances and metadata (i.e. temperature, location, depth, etc.).

Load the gene and transcript abundances
profile <- fread("datasets/part1/MGS_K03040_K03043_tara.tsv.gz",sep="\t",

header=T,data.table = F,tmpdir=".")
sample_info <- fread("datasets/part1/sample_info.csv",sep=",",

header=T, data.table = F, tmpdir=".")

Gene length normalisation

The first step in the normalisation process is to divide the insert counts by the gene length for each gene in each sample.
Since the unmapped (-1) fraction does not have a length, we assign it the median gene length.

Note: During short read sequencing, DNA is randomly sheared into inserts of known size distribution and sequenced.
If paired-end sequencing is used, two DNA sequences (reads) are generated - one from each end of a DNA fragment.
Here, we count inserts, not reads.

Assigns median gene length to -1 fraction
Example file does not contain -1 fraction, so this will have no effect for us
if (length(which(profile$length < 0)) > 0){
med_length = median(profile$length[which(profile$length > 0)])
profile$length[which(profile$length < 0)] <- med_length

}

6.10. Metatranscriptomics with Metagenomics 49

Methods in Microbiomics, Release 0.0.1

We now build a gene-length normalized profile

profile_lengthnorm <- profile[, 1:4]
for (i in 5:ncol(profile)){
cat("Normalizing by gene length: sample", colnames(profile)[i], "\n")
tmp <- profile[, i]/profile$length %>%
as.data.frame()

colnames(tmp) <- colnames(profile)[i]
profile_lengthnorm <- profile_lengthnorm %>%
bind_cols(tmp)

}

Sequencing depth, per cell normalisation and compositionality

To account for differences in sequencing depth, as well as for differences in genome sizes between different samples,

Note: What are marker genes (MGs)?

• Universal: present in “all” prokaryotes

• Single-copy: always present once per cell (genome)

• Are housekeeping genes

Because of these characteristics, the abundance of marker genes (MGs) correlates well with the sequencing depth.
In addition, the median abundance of MGs is a good proxy for the number of cells captured in a given metage-
nomic/metatranscriptomic sample. The per-cell normalization accounts for differences in genome sizes between sam-
ples and also controls for compositionality. The result of this normalisation is a biologically meaningful unit: gene
copies per total cell in the community.

To normalize by abundance of 10 MGs, we first compute their total insert count in each sample (i.e. sum the counts for
each of the 10 KOs). We then compute the median of the 10 MGs in each sample. Finally, we divide the gene-length
normalized abundances by this median for each sample.

In this example we use the following marker genes:

Define the KOs corresponding to the 10 MGs
mgs <- c("K06942", "K01889", "K01887", "K01875", "K01883",

"K01869", "K01873", "K01409", "K03106", "K03110")

Build a MGs normalized profile
profile_lengthnorm_mgnorm <- profile_lengthnorm[, 1:4]

for (i in 5:ncol(profile_lengthnorm)){
(continues on next page)

50 Chapter 6. Support

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

cat("Normalizing by 10 MGs: sample", colnames(profile_lengthnorm)[i], "\n")
mg_median <- profile_lengthnorm %>%
select(KO, abundance = all_of(colnames(profile_lengthnorm)[i])) %>%
filter(KO %in% mgs) %>%
group_by(KO) %>% summarise(abundance = sum(abundance)) %>%
ungroup() %>% summarise(mg_median = median(abundance)) %>%
pull()

tmp <- profile_lengthnorm[,i]/mg_median
tmp <- tmp %>% as.data.frame()
colnames(tmp) <- colnames(profile_lengthnorm)[i]
profile_lengthnorm_mgnorm <- profile_lengthnorm_mgnorm %>%
bind_cols(tmp)

}

Showing the effect of the normalization

Here, we visualize the effect of the normalization based on length and abundance of marker genes. Using this script
we create the following plots:

6.10. Metatranscriptomics with Metagenomics 51

Methods in Microbiomics, Release 0.0.1

52 Chapter 6. Support

Methods in Microbiomics, Release 0.0.1

We will first look at 2 KOs: K03040 and K03043. These encode for 2 subunits of RNA polymerase. We first
subset the raw metagenomic counts for these 2 genes (rp_ab) and then do the same with length normalised counts
(rp_ab_lengthnorm), and finally visualize the relationship.

Compute the abundance of K03040 and K03043 with and without gene-length normalization
rp_ab <- profile %>%
select(-reference, -length, -Description) %>%
filter(KO %in% c("K03040", "K03043")) %>%
pivot_longer(-KO, names_to = "sample", values_to = "inserts") %>%
filter(grepl('METAG', sample)) %>%
group_by(KO, sample) %>% summarize(inserts = sum(inserts)) %>%
pivot_wider(names_from = "KO", values_from = "inserts")

rp_ab_lengthnorm <- profile_lengthnorm %>%
(continues on next page)

6.10. Metatranscriptomics with Metagenomics 53

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

select(-reference, -length, -Description) %>%
filter(KO %in% c("K03040", "K03043")) %>%
pivot_longer(-KO, names_to = "sample", values_to = "inserts_lengthnorm") %>%
filter(grepl('METAG', sample)) %>%
group_by(KO, sample) %>% summarise(inserts_lengthnorm = sum(inserts_lengthnorm)) %>%
pivot_wider(names_from = "KO", values_from = "inserts_lengthnorm")

g1 <- ggplot(data = rp_ab, aes(x = K03040, y = K03043)) +
geom_point(alpha = 0.5) +
geom_abline(slope = (1342/329)) +
geom_abline(linetype = 2) +
xlim(range(rp_ab$K03040, rp_ab$K03043)) +
ylim(range(rp_ab$K03040, rp_ab$K03043)) +
xlab("K03040: rpoA\n(DNA-directed RNA polymerase subunit alpha)") +
ylab("K03043: rpoB\n(DNA-directed RNA polymerase subunit beta)") +
labs(title = "Insert counts", subtitle = "Slope ~ 4 which corresponds to the ratio of␣

→˓gene lengths\n(K03040: 1,342 aa; K03043: 329 aa in E. coli K-12)") +
coord_fixed() +
theme_bw() +
theme(plot.subtitle = element_text(size = 7))

g2 <- ggplot(data = rp_ab_lengthnorm, aes(x = K03040, y = K03043)) +
geom_point(alpha = 0.5) +
geom_abline(linetype = 2) +
xlim(range(rp_ab_lengthnorm$K03040, rp_ab_lengthnorm$K03043)) +
ylim(range(rp_ab_lengthnorm$K03040, rp_ab_lengthnorm$K03043)) +
xlab("K03040: rpoA\n(DNA-directed RNA polymerase subunit alpha)") +
ylab("K03043: rpoB\n(DNA-directed RNA polymerase subunit beta)") +
labs(title = "Gene-length normalized insert counts", subtitle = "Slope ~ 1 once insert␣

→˓counts are corrected for differences\nin gene lengths") +
coord_fixed() +
theme_bw() +
theme(plot.subtitle = element_text(size = 7))

g1|g2

Now, we’re going to look at correlation of marker gene abundance with sequencing depth and the correlation in abun-
dance between different marker genes.

Compute the abundance of the 10MGs and correlate to sequencing depth
mgs_ab_lengthnorm <- profile_lengthnorm %>%
select(-reference, -Description, -length) %>%
filter(KO %in% mgs) %>%
pivot_longer(-KO, names_to = "sample", values_to = "inserts_lengthnorm") %>%
group_by(KO, sample) %>% summarise(inserts_lengthnorm = sum(inserts_lengthnorm)) %>%
ungroup() %>% group_by(sample) %>% summarise(median_mgs = median(inserts_lengthnorm))

→˓%>%
inner_join(sample_info, by = c("sample" = "sample_metag"))

(continues on next page)

54 Chapter 6. Support

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

g3 <- ggplot(data = mgs_ab_lengthnorm, aes(x = sample_metag_nreads, y = median_mgs)) +
geom_point(alpha = 0.5) +
#geom_smooth(method = "lm") +
#scale_x_log10() +
#scale_y_log10() +
xlab("Sequencing depth (number of reads)") +
ylab("Median abundance of the 10 universal\nand single-copy marker genes") +
theme_bw() +
theme(legend.title = element_blank())

g3

Compute the abundance of the 10MGs and their autocorrelation

mgs_ab_lengthnorm <- profile_lengthnorm %>%
select(-reference, -Description, -length) %>%
filter(KO %in% mgs) %>%
pivot_longer(-KO, names_to = "sample", values_to = "inserts_lengthnorm") %>%
group_by(KO, sample) %>% summarise(inserts_lengthnorm = sum(inserts_lengthnorm)) %>%
inner_join(sample_info, by = c("sample" = "sample_metag")) %>%
select(KO, sample, inserts_lengthnorm) %>%
pivot_wider(names_from = "KO", values_from = "inserts_lengthnorm")

g4 <- ggpairs(data = mgs_ab_lengthnorm %>% column_to_rownames("sample")) +
scale_x_log10() +
scale_y_log10()

g4

Combining Metatranscriptomic and Metagenomic Data

In this section we combine metatranscriptomic and metagenomic data and create the following plot:

6.10. Metatranscriptomics with Metagenomics 55

Methods in Microbiomics, Release 0.0.1

Load normalized profile
gc_profile <- fread("datasets/part1/K03704_tara_lengthnorm_percell.tsv.gz", sep = "\t",␣
→˓header = T, data.table = F, tmpdir = ".")
sample_info <- fread("datasets/part1/sample_info.csv",sep=",",

header=T, data.table = F, tmpdir=".")

ko_profile <- gc_profile %>%
group_by(KO) %>% summarise(across(starts_with("TARA"), sum)) %>%
as.data.frame()

Compute the gene abundance, transcript abundance and expression for the pairs of metaG-
(continues on next page)

56 Chapter 6. Support

Methods in Microbiomics, Release 0.0.1

(continued from previous page)

→˓metaT samples
The expression is just the ratio of transcript_abundance to gene_abundance
tmp_sample_info <- sample_info %>%
select(sample_metag, sample_metat) %>%
mutate(sample_pair = paste(sample_metag, sample_metat, sep = "-"))

tmp_metag <- ko_profile %>%
select(KO, all_of(tmp_sample_info$sample_metag)) %>%
pivot_longer(-KO, names_to = "sample_metag", values_to = "gene_abundance")

tmp_metat <- ko_profile %>%
select(KO, all_of(tmp_sample_info$sample_metat)) %>%
pivot_longer(-KO, names_to = "sample_metat", values_to = "transcript_abundance")

final_profile <- tmp_sample_info %>%
left_join(tmp_metag, by = "sample_metag") %>%
left_join(tmp_metat, by = c("KO", "sample_metat")) %>%
mutate(expression = transcript_abundance/gene_abundance)

toplot <- final_profile %>%
filter(KO == "K03704") %>%
left_join(sample_info, by = c("sample_metag","sample_metat"))

g_metat <- ggplot(data = toplot, aes(y = transcript_abundance, x = Temperature, color = ␣
→˓polar)) +
geom_point() +
geom_smooth(method = "gam", se = T, formula = y ~ s(x, bs = "cs", k=5)) +
scale_color_manual(values = c("darkgreen", "darkblue"))+
ylab("Transcript abundance") +
theme_bw() +
theme(legend.position = "none")

g_metag <- ggplot(data = toplot, aes(y = gene_abundance, x = Temperature, color =␣
→˓polar)) +
geom_point() +
geom_smooth(method = "gam", se = T, formula = y ~ s(x, bs = "cs", k=5)) +
#scale_y_log10() +
#coord_flip() +
scale_color_manual(values = c("darkgreen", "darkblue")) +
ylab("Gene abundance") +
theme_bw() +
theme(legend.position = "none")

g_exp <- ggplot(data = toplot, aes(y = expression, x = Temperature, color = polar)) +
geom_point() +
geom_smooth(method = "gam", se = T, formula = y ~ s(x, bs = "cs", k=5)) +
#scale_y_log10() +
#coord_flip() +
scale_color_manual(values = c("darkgreen", "darkblue")) +
ylab("Gene expression") +
theme_bw() +
theme(legend.position = "top", legend.title = element_blank())

g <- g_metag | g_exp | g_metat
g

6.10. Metatranscriptomics with Metagenomics 57

Methods in Microbiomics, Release 0.0.1

6.11 TN-Seq Protocol

Protocol provided by the van der Meer group.

As described by Tim van Opijnen et al., Tn-seq is a method to determine quantitative genetic interactions on a genome-
wide scale in microorganisms.

6.11.1 Sequence Mapping

In the first step of the data processing, we use the reads as they come from the Illumina machine, we identify in the
reads if they carry a Tn5-end; and select only those reads using cutadapt. Then we blast the reads to the transposon
sequence to remove those that are only transposon. The remaining reads are mapped to the combined genome using
bowtie, counted per position and grouped per gene in a perl script.

6.11.2 Combined clean Reads

In the second step of the data processing, we combine all reads from all samples per library, remove outliers, normalize
and save the files.

6.11.3 PCA Analysis

In the third step, we compare all data in a PCA. For this, replace all NaNs by 0, calculate the pca and plot the first two
coefficients.

6.11.4 Essentiality Analysis

In the third step, we try to define the essential genes at time t=0. We do this by comparing to a randomized virtual
insertion library.

To create the random insertion library, we take the combined genomes and use the actual gene coordinates to outline
starts and stops. We produce a random genome file and choose four times randomly unique values within this range.
This is then summed for the gene positions to create fake random insertion libraries.

To get the t=0 dataset, select the t=0 samples in the normalized files with outliers removed. Replace the NaN by zeros
and estimate whether the mean read number is significantly lower in T0 datasets.

Next, we attribute the group of essentials to their Clusters of Orthologous Genes Category (COG) and compare this
attribution to a random simulation of genes drawn. This we do 10 times, to get an average random COG attribution of
genes from the genome. From there, we calculate the p-value for the difference of the observed to the simulated COG
attributions and plot this as a histogram.

6.11.5 Paired Analysis

In the next step, we define the genes with conditional fitness effects at any of the three sampling time points compared
to time t=0. We do this by taking the means across all replicates of the T1-T3 samples, and calculating the ratio to the
mean of the T0 values. We do this for each library individually and for each condition. From this comparison, we also
calculate a p-value and an FDR, from the function mattest and mafdr using BHFDR correction for multiple hypothesis
testing.

As conditional fitness we put a threshold of a ratio change of >2 (‘down’) or <0.5 (‘up’), plus an FDR<0.05, and the
initial ratio to the random insertion library >0.25 (to avoid taking previously allocated essential genes).

58 Chapter 6. Support

https://doi.org/10.1038/nmeth.1377

Methods in Microbiomics, Release 0.0.1

Finally, we compare gene lists to find the overlap and unique differences per library and condition. This is used to plot
the Venn diagram.

For defined sets of gene groups we plot the ratio of mean counts at each time point compared to T0 in colour, overlaid
on all ratios; to highlight time trends.

6.11.6 Gene Group Plots

In this step, we use free text searching and defined gene groups for biological systems such as ‘flagella’ to select the gene
insertion count ratios and plot those. We use both heatmap representation for individual genes, as well as a summed
representation in which all counts for the group is combined and compared.

6.11.7 COG KEGG Analysis

In this step of the analysis, we focus analysis on attribution of genes from the selected UP and DOWN gene lists to
COG or KEGG groups, and calculate statistical enrichment or depletion of such group attribution compared to random
models. Finally, we plot the data in a variety of ways.

COG attribution

We start with the paired comparison data of the ratios T0-replicates/T1-3 replicates and the corresponding p-values
and FDR. We also load the annotation files of the genomes, the manually curated COG list, the gene name list and the
gene number list. For the attribution we use the selected gene lists and the total DOWN and UP files for the two soils.

We now first build a set of random simulations from the length of the selected set. For example, if a DOWN file has 820
items, we simulate random picking for 820 genes from the genome. For each of the randomly picked gene lists, we find
matches to the COG and retrieve the corresponding distribution of COG classes. This is done 10 times. From here we
calculate the means, standard deviation and variation and we compare to the actual COG attributed list in the DOWN
file. Finally, we attribute a confidence interval on the difference to the mean from the random data set by bootstrapping
and a p-value of<0.01, and we calculate a p-value and FDR by mafdr of the random to real list comparison. The results
are saved to a separate Excel for each comparison, to which we also add the individual gene annotations. The whole
procedure and results is also saved in a file.

Polar Plots of COG class distributions

All the produced COG class distributions and enrichment factors are now plotted as a polar plot. Essentially, we plot
the mean random relative count of class attribution and the actual relative count, as a log2 transformed bar in a radial
output. We add a star if the FDR value is below 0.05.

KEGG class distributions

Essentially we follow the same idea as for the COG attribution, but now we focus on prediction of metabolic pathways.
Again we make 10 random distributions to compare the observed data to.

6.11. TN-Seq Protocol 59

Methods in Microbiomics, Release 0.0.1

Plotting KEGG class enrichment as Volcano plot

We plot a figure with four panels for each of the exclusive DOWN categories side by side that shows on the x-axis the
log-FC of the observation compared to the mean of the random picked/attributed pathways, and on the y-axis the -log10
of the calculated p-value for the variation. We also plot a legend with the precise color attribution for the categories.

Plotting metabolic pathways on the KEGG map

Finally, we plot all and exclusive attributed KEGG metabolic pathways on top of the general map in iPATH3, per library
and per soil or liquid category. By gene number or gene name we recover the reaction numbers from the genome-scale
model file, copy that list to the iPATH3 website and save the map as .svg.

60 Chapter 6. Support

	Tutorials
	Data Preprocessing
	Genome Assembly
	Taxonomic Profiling
	Transcriptomics Analysis
	Support
	Data Preprocessing
	General Considerations
	Other Considerations
	Filtering out host reads
	Normalization
	Pair-read Merging

	Genome Assembly
	Isolate genome assembly using short reads
	Alternative Approach

	Metagenomic Assembly
	Metagenomic Assembly
	Gene Catalogs
	Building
	Gene Catalog Profiling

	MAGs
	MAG Building
	MAG building: low abundance metagenome/pooled assembly

	Amplicon Sequencing
	16S and 18S Sequencing primers
	16S Data Analysis

	Taxonomic Profiling of Metagenomes
	mOTUs
	mTAGs
	Choosing between mOTUs and mTAGs

	MAPseq

	zAMP: Amplicon-based Metagenomics Pipeline for reproducible and scalable Microbiota Profiling
	Applications
	Implementation of zAMP
	Input Files for zAMP
	Some of the Features

	SNV Analysis on Metagenomic Data
	Aim
	Overview
	Create a Database of Metagenome-assembled Genomes (MAGs)
	Annotate the representative Database (optional)
	Make Scaffolds to bin File
	Map reads to MAG Database
	Make the inStrain Profile
	Run inStrain compare

	zDB: Comparative Genomics Analysis
	Target Audience
	zDB: Supported Analyses
	Input Files for zDB
	How to install and run zDB
	Accessibility of the Output
	Useful Links to explore zDB by yourself!

	Metatranscriptomics without Metagenomics (defined Community)
	Transcript quantification
	Preprocessing the genomes
	Transcript profiling

	Metatranscriptomics with Metagenomics
	Dataset
	Data Normalisation
	Setting up R environment and loading the data
	Gene length normalisation
	Sequencing depth, per cell normalisation and compositionality
	Showing the effect of the normalization
	Combining Metatranscriptomic and Metagenomic Data

	TN-Seq Protocol
	Sequence Mapping
	Combined clean Reads
	PCA Analysis
	Essentiality Analysis
	Paired Analysis
	Gene Group Plots
	COG KEGG Analysis
	COG attribution
	Polar Plots of COG class distributions
	KEGG class distributions
	Plotting KEGG class enrichment as Volcano plot
	Plotting metabolic pathways on the KEGG map

